首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   0篇
生物科学   65篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2013年   1篇
  2012年   3篇
  2011年   4篇
  2009年   4篇
  2008年   6篇
  2007年   1篇
  2006年   7篇
  2005年   4篇
  2004年   2篇
  2003年   8篇
  2002年   7篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有65条查询结果,搜索用时 328 毫秒
1.
We compared the Q10 relationship for root‐derived respiration (including respiration due to the root, external mycorrhizal mycelium and rhizosphere microorganisms) with that of mainly external ectomycorrhizal mycelium and that of bulk soil microorganisms without any roots present. This was studied in a microcosm consisting of an ectomycorrhizal Pinus muricata seedling growing in a sandy soil, and where roots were allow to colonize one soil compartment, mycorrhizal mycelium another compartment, and the last compartment consisted of root‐ and mycorrhiza‐free soil. The respiration rate in the bulk soil compartment was 30 times lower than in the root compartment, while that in the mycorrhizal compartment was six times lower. There were no differences in Q10 (for 5–15°C) between the different compartments, indicating that there were no differences in the temperature relationship between root‐associated and non‐root‐associated organisms. Thus, there are no indications that different Q10 values should be used for different soil organism, bulk soil or rhizosphere‐associated microorganisms when modelling the effects of global climate change.  相似文献   
2.
There is evidence that anthropogenic nitrogen (N) deposition enhances carbon (C) sequestration in boreal forest soils. However, it is unclear how free‐living saprotrophs (bacteria and fungi, SAP) and ectomycorrhizal (EM) fungi responses to N addition impact soil C dynamics. Our aim was to investigate how SAP and EM communities are impacted by N enrichment and to estimate whether these changes influence decay of litter and humus. We conducted a long‐term experiment in northern Sweden, maintained since 2004, consisting of ambient, low N additions (0, 3, 6, and 12 kg N ha?1 year?1) simulating current N deposition rates in the boreal region, as well as a high N addition (50 kg N ha?1 year?1). Our data showed that long‐term N enrichment impeded mass loss of litter, but not of humus, and only in response to the highest N addition treatment. Furthermore, our data showed that EM fungi reduced the mass of N and P in both substrates during the incubation period compared to when only SAP organisms were present. Low N additions had no effect on microbial community structure, while the high N addition decreased fungal and bacterial biomasses and altered EM fungi and SAP community composition. Actinomycetes were the only bacterial SAP to show increased biomass in response to the highest N addition. These results provide a mechanistic understanding of how anthropogenic N enrichment can influence soil C accumulation rates and suggest that current N deposition rates in the boreal region (≤12 kg N ha?1 year?1) are likely to have a minor impact on the soil microbial community and the decomposition of humus and litter.  相似文献   
3.
4.
5.
Hybridization may lead to unique phytochemical expression in plant individuals. Hybrids may express novel combinations or extreme concentrations of secondary metabolites or, in some cases, produce metabolites novel to both parental species. Here we test whether there is evidence for extreme metabolite expression or novelty in F1 hybrids between Senecio aquaticus and Senecio jacobaea. Hybridization is thought to occur frequently within Senecio, and hybridization might facilitate secondary metabolite diversification within this genus. Parental species express different quantities of several classes of compounds known to be involved in antiherbivore defence, including pyrrolizidine alkaloids, chlorogenic acid, flavonoids and benzoquinoids. Hybrids demonstrate differential expression of some metabolites, producing lower concentrations of amino acids, and perhaps flavonoids, than either parental species. Despite evidence for quantitative hybrid novelty in this system, NMR profiling did not detect any novel compounds among the plant groups studied. Metabolomic profiling is a useful technique for identifying qualitative changes in major metabolites according to plant species and/or genotype, but is less useful for identifying small differences between plant groups, or differences in compounds expressed in low concentrations.  相似文献   
6.
Anthropogenic N deposition may change soil conditions in forest ecosystems as demonstrated in many studies of coniferous forests, whereas results from deciduous forests are relatively scarce. Therefore the influence of N deposition on several variables was studied in situ in 45 oak-dominated deciduous forests along a N deposition gradient in southern Sweden, where the deposition ranged from 10 to 20 kg N ha−1 year−1. Locally estimated NO 3 deposition, as measured with ion-exchange resins (IER) on the soil surface, and grass N concentration (%) were positively correlated with earlier modelled regional N deposition. Furthermore, the δ15N values of grass and uppermost soil layers were negatively correlated with earlier modelled N deposition. The data on soil NO 3 , measured with IER in the soil, and grass N concentration suggest increased soil N availability as a result of N deposition. The δ15N values of grass and uppermost soil layers indicate increased nitrification rates in high N deposition sites, but no large downward movements of NO 3 in these soils. Only a few sites had NO 3 concentrations exceeding 1 mg N l−1 in soil solution at 50 cm depth, which showed that N deposition to these acid oak-dominated forests has not yet resulted in extensive leaching of N. The δ15N enrichment factor was the variable best correlated with NO 3 concentrations at 50 cm and is thus a variable that potentially may be used to predict leaching of NO 3 from forest soils.  相似文献   
7.
Deciduous forests may respond differently from coniferous forests to the anthropogenic deposition of nitrogen (N). Since fungi, especially ectomycorrhizal (EM) fungi, are known to be negatively affected by N deposition, the effects of N deposition on the soil microbial community, total fungal biomass and mycelial growth of EM fungi were studied in oak-dominated deciduous forests along a nitrogen deposition gradient in southern Sweden. In-growth mesh bags were used to estimate the production of mycelia by EM fungi in 19 oak stands in the N deposition gradient, and the results were compared with nitrate leaching data obtained previously. Soil samples from 154 oak forest sites were analysed regarding the content of phospholipid fatty acids (PLFAs). Thirty PLFAs associated with microbes were analysed and the PLFA 18:2ω6,9 was used as an indicator to estimate the total fungal biomass. Higher N deposition (20 kg N ha−1 y−1 compared with 10 kg N ha−1 y−1) tended to reduce EM mycelial growth. The total soil fungal biomass was not affected by N deposition or soil pH, while the PLFA 16:1ω5, a biomarker for arbuscular mycorrhizal (AM) fungi, was negatively affected by N deposition, but also positively correlated to soil pH. Other PLFAs positively affected by soil pH were, e.g., i14:0, a15:0, 16:1ω9, a17:0 and 18:1ω7, while some were negatively affected by pH, such as i15:0, 16:1ω7t, 10Me17:0 and cy19:0. In addition, N deposition had an effect on the PLFAs 16:1ω7c and 16:1ω9 (negatively) and cy19:0 (positively). The production of EM mycelia is probably more sensitive to N deposition than total fungal biomass according to the fungal biomarker PLFA 18:2ω6,9. Low amounts of EM mycelia covaried with increased nitrate leaching, suggesting that EM mycelia possibly play an important role in forest soil N retention at increased N input.  相似文献   
8.
We investigated element accumulation in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal spores and mycelia growing in monoxenic cultures were analyzed. The elemental composition was quantified using particle-induced X-ray emission (PIXE) in combination with scanning transmission ion microscopy. In the spores, Ca and Fe were associated mainly with the spore wall, while P and K showed patchy distributions and their concentrations were correlated. Excess of P in the hyphal growth medium increased the P and Si concentrations in spores and increased the K/Ca ratio in spores. Increased P availability decreased the concentration of Zn and Mn in spores. We concluded that the availability of P influences the uptake and accumulation of several elements in spores. It is demonstrated that PIXE analysis is a powerful tool for quantitative analysis of elemental accumulation in fungal mycelia.  相似文献   
9.
10.
Due to acid rain and nitrogen deposition, there is growing concern that other mineral nutrients, primarily potassium and phosphorus, might limit forest production in boreal forests. Ectomycorrhizal (EcM) fungi are important for the acquisition of potassium and phosphorus by trees. In a field investigation, the effects of poor potassium and phosphorus status of forest trees on the production of EcM mycelium were examined. The production of EcM mycelium was estimated in mesh bags containing sand, which were buried in the soil of forests of different potassium and phosphorus status. Mesh bags with 2% biotite or 1% apatite in sand were also buried to estimate the effect of local sources of nutrients on the production of EcM mycelium. No clear relation could be found between the production of EcM mycelium and nutrient status of the trees. Apatite stimulated the mycelial production, while biotite had no significant effect. EcM root production at the mesh bag surfaces was stimulated by apatite amendment in a forest with poor phosphorus status. The contribution of EcM fungi to apatite weathering was estimated by using rare earth elements (REE) as marker elements. The concentration of REE was 10 times higher in EcM roots, which had grown in contact with the outer surface of apatite-amended mesh bags than in EcM roots grown in contact with the biotite amended or sand-filled mesh bags. In a laboratory study, it was confirmed that REE accumulated in the roots with very low amounts <1 translocated to the shoots. The short-term effect of EcM mycelium on the elemental composition of biotite and apatite was investigated and compared with biotite- and apatite-amended mesh bags buried in trenched soil plots, which were free from EcM fungi. The mesh bags subjected to EcM fungi showed no difference in chemical composition after 17 months in the field. This study suggests that trees respond to phosphorus limitation by increased exploitation of phosphorus-containing minerals by ectomycorrhiza. However, the potential to ameliorate potassium limitation in a similar way appears to be low.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号