首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   19篇
  国内免费   1篇
生物科学   267篇
  2019年   2篇
  2017年   4篇
  2016年   4篇
  2015年   7篇
  2014年   6篇
  2013年   6篇
  2012年   7篇
  2011年   10篇
  2010年   10篇
  2009年   9篇
  2008年   11篇
  2007年   13篇
  2006年   6篇
  2005年   10篇
  2004年   11篇
  2003年   5篇
  2002年   5篇
  2001年   10篇
  2000年   7篇
  1999年   5篇
  1998年   2篇
  1997年   6篇
  1996年   4篇
  1995年   8篇
  1994年   4篇
  1993年   7篇
  1992年   2篇
  1991年   2篇
  1990年   5篇
  1989年   4篇
  1988年   5篇
  1987年   6篇
  1986年   6篇
  1985年   6篇
  1983年   3篇
  1982年   3篇
  1981年   6篇
  1980年   2篇
  1979年   2篇
  1977年   4篇
  1976年   3篇
  1975年   3篇
  1974年   6篇
  1973年   4篇
  1972年   2篇
  1966年   2篇
  1958年   1篇
  1951年   1篇
  1950年   1篇
  1924年   1篇
排序方式: 共有267条查询结果,搜索用时 15 毫秒
1.
2.
3.
Time-lapsed in vivo micro-computed tomography is a powerful tool to analyse longitudinal changes in the bone micro-architecture. Registration can overcome problems associated with spatial misalignment between scans; however, it requires image interpolation which might affect the outcome of a subsequent bone morphometric analysis. The impact of the interpolation error itself, though, has not been quantified to date. Therefore, the purpose of this ex vivo study was to elaborate the effect of different interpolator schemes [nearest neighbour, tri-linear and B-spline (BSP)] on bone morphometric indices. None of the interpolator schemes led to significant differences between interpolated and non-interpolated images, with the lowest interpolation error found for BSPs (1.4%). Furthermore, depending on the interpolator, the processing order of registration, Gaussian filtration and binarisation played a role. Independent from the interpolator, the present findings suggest that the evaluation of bone morphometry should be done with images registered using greyscale information.  相似文献   
4.
5.
SUMMARY OF GREEN PLANT PHYLOGENY AND CLASSIFICATION   总被引:7,自引:0,他引:7  
Abstract— A cladogram of green plants involving all major extant groups of green algae, bryophytes, pteridophytes, and seed plants is presented. It is partly based on contributions by B. Mishler and S. Churchill, H. Wagner, and P. Crane. The relationships of green plants to other green organisms ( Prochloron , euglenophytes) are discussed. The characters and subclades of the cladogram are briefly discussed, with an attempt to indicate weak points. The possibility of including some major extinct groups is considered. A cladistic classification consistent with the cladogram is presented. Grades are abandoned as taxa and major clades like the division Chlorophyta (green algae excluding micro-monadophytes and charophytes sensu Mattox and Stewart), the division Streptophyta (charophytes + embryophytes), the subdivision Embryophytina (land plants or embryophytes), the superclass Tracheidatae (tracheophytes), and the class Spermatopsida (seed plants) are recognized.  相似文献   
6.
Hereditary spastic paraplegia (HSP) is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs). Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice.  相似文献   
7.
Homogenates of the posterior latissimus dorsi muscle, a phasic muscle, were fractionated by a one-step zonal centrifugation technique into four major organelle populations and cytoplasmic constituents. These were: (1) Plasma membrane fragments with a modal equilibrium density of 1.10 and containing 5′-nucleotidase, alkaline phosphodiesterase, p-nitrophenylphosphatase and acid phosphatase (β-glycerophosphate was used as the substrate). (2) Sarcoplasmic reticular fragments which could be further subdivided into calcium transport vesicles, with a modal equilibrium density of 1.16, that exhibited calcium uptake; K+-ATPase; leucyl-β-naphthylamidase; acid phosphodiesterase; acid phosphatase (using cytidine monophosphate as the substrate); and sarcoplasmic reticular lysosomes, with a modal equilibrium density of 1.18, possessing dipeptidyl-aminopeptidase II, cathepsin D, α-glucosidase, N-acetyl-β-glucosaminidase, and NADH oxidase activity. (3) Mitochondria with a modal equilibrium density of 1.21. (4) Catalase-containing vesicles with a modal equilibrium density of 1.22; and cytoplasmic constituents (modal density of 1.25) with phosphorylase, pyruvate kinase, myosin-ATPase, aldolase, and protein and RNA content. The purity of these organelles was equal to or better than previous efforts, with a 30-fold purification achieved for 5′-nucleotidase and alkaline phosphodiesterase. These results lend support to the hypothesis that the sarcoplasmic reticulum of phasic muscle, in addition to its specialized role in excitation-contraction coupling, represents a multifunctional membrane system, and that, similar to the smooth endoplasmic reticulum of other cells, it includes some membrane-bound lysosomal enzymes and NADH oxidase.  相似文献   
8.
ABSTRACT In Quebec, Canada, harvest of bobcats (Lynx rufus) started to decline in 1985 and by 1991, harvest seasons were closed due to concerns of a perceived population decline. Since the closing of harvest season in 1991, the average temperature has increased, snow quantity has decreased, and important changes in agriculture and forest management have occurred. In light of changing conditions, the situation of Quebec bobcats needed reassessment. Thus, we analyzed harvest data to clarify the current status of bobcat populations in Quebec. From 1980 to 1991, bobcat harvest in Quebec was strongly correlated with bobcat harvest in Maine (USA), Nova Scotia (Canada), Ontario (Canada), and Vermont (USA). Extrapolations of harvest in Quebec relative to harvest in Maine, Ontario, Vermont, and Nova Scotia suggested an increase in number of bobcats after 1991. Mass of male and female bobcats before 1991 was less than mass of animals captured after 1991. Percentage of juveniles in the reported harvest before 1991 was higher than after 1991. However, percentage of males and litter sizes in the harvest did not differ before and after 1991. The geographic distribution of bobcats captured has gradually expanded after the closure of the harvest season. Our findings suggest that bobcat populations in Quebec have recovered from the 1985–1991 decline, and that the harvest season for this species could resume. This study also illustrates how managers can rely on data from neighboring jurisdiction to manage species when local harvest data is unavailable.  相似文献   
9.
The purpose of this study was to determine mitochondrial changes in fast muscles from interleukin-15 receptor alpha knockout (IL-15RαKO) mice. We tested the hypothesis that fast muscles from IL-15RαKO mice would have a greater mitochondrial density and altered internal structure compared to muscles from control mice. In fast muscles from IL-15RαKO mice, mitochondrial density was 48% greater with a corresponding increase in mitochondrial DNA content. Although there were no differences in the relative size of isolated mitochondria, internal complexity was lower in mitochondria from IL-15RαKO mice. These data support an increase in mitochondrial biogenesis and provide direct evidence for a greater density and altered internal structure of mitochondria in EDL muscles deficient in IL-15Rα.  相似文献   
10.
CLC anion transporters form dimers that function either as Cl channels or as electrogenic Cl/H+ exchangers. CLC channels display two different types of “gates,” “protopore” gates that open and close the two pores of a CLC dimer independently of each other and common gates that act on both pores simultaneously. ClC-7/Ostm1 is a lysosomal 2Cl/1H+ exchanger that is slowly activated by depolarization. This gating process is drastically accelerated by many CLCN7 mutations underlying human osteopetrosis. Making use of some of these mutants, we now investigate whether slow voltage activation of plasma membrane-targeted ClC-7/Ostm1 involves protopore or common gates. Voltage activation of wild-type ClC-7 subunits was accelerated by co-expressing an excess of ClC-7 subunits carrying an accelerating mutation together with a point mutation rendering these subunits transport-deficient. Conversely, voltage activation of a fast ClC-7 mutant could be slowed by co-expressing an excess of a transport-deficient mutant. These effects did not depend on whether the accelerating mutation localized to the transmembrane part or to cytoplasmic cystathionine-β-synthase (CBS) domains of ClC-7. Combining accelerating mutations in the same subunit did not speed up gating further. No currents were observed when ClC-7 was truncated after the last intramembrane helix. Currents and slow gating were restored when the C terminus was co-expressed by itself or fused to the C terminus of the β-subunit Ostm1. We conclude that common gating underlies the slow voltage activation of ClC-7. It depends on the CBS domain-containing C terminus that does not require covalent binding to the membrane domain of ClC-7.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号