首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   19篇
  国内免费   9篇
生物科学   228篇
  2023年   2篇
  2020年   1篇
  2019年   5篇
  2018年   4篇
  2017年   5篇
  2016年   2篇
  2015年   12篇
  2014年   16篇
  2013年   18篇
  2012年   6篇
  2011年   16篇
  2010年   12篇
  2009年   11篇
  2008年   8篇
  2007年   8篇
  2006年   10篇
  2005年   5篇
  2004年   10篇
  2003年   4篇
  2002年   2篇
  2001年   4篇
  2000年   3篇
  1999年   6篇
  1998年   7篇
  1997年   8篇
  1996年   4篇
  1995年   2篇
  1994年   7篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1982年   3篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1969年   1篇
  1955年   1篇
  1954年   2篇
排序方式: 共有228条查询结果,搜索用时 156 毫秒
1.
2.
The terrestrial water cycle links the soil and atmosphere moisture reservoirs through four fluxes: precipitation, evaporation, runoff, and atmospheric moisture convergence (net import of water vapor to balance runoff). Each of these processes is essential for sustaining human and ecosystem well-being. Predicting how the water cycle responds to changes in vegetation cover remains a challenge. Recently, changes in plant transpiration across the Amazon basin were shown to be associated disproportionately with changes in rainfall, suggesting that even small declines in transpiration (e.g., from deforestation) would lead to much larger declines in rainfall. Here, constraining these findings by the law of mass conservation, we show that in a sufficiently wet atmosphere, forest transpiration can control atmospheric moisture convergence such that increased transpiration enhances atmospheric moisture import and results in water yield. Conversely, in a sufficiently dry atmosphere increased transpiration reduces atmospheric moisture convergence and water yield. This previously unrecognized dichotomy can explain the otherwise mixed observations of how water yield responds to re-greening, as we illustrate with examples from China's Loess Plateau. Our analysis indicates that any additional precipitation recycling due to additional vegetation increases precipitation but decreases local water yield and steady-state runoff. Therefore, in the drier regions/periods and early stages of ecological restoration, the role of vegetation can be confined to precipitation recycling, while once a wetter stage is achieved, additional vegetation enhances atmospheric moisture convergence and water yield. Recent analyses indicate that the latter regime dominates the global response of the terrestrial water cycle to re-greening. Evaluating the transition between regimes, and recognizing the potential of vegetation for enhancing moisture convergence, are crucial for characterizing the consequences of deforestation as well as for motivating and guiding ecological restoration.  相似文献   
3.
Phenology influences many forest functions and can inform forest conservation and management, yet representative phenological data for most common tropical forest tree species remain sparse or absent. Between June 2011 and December 2013, we investigated flowering, fruiting, and leafing patterns in the Bwindi Impenetrable National Park, a montane forest located near the equator in Uganda, drawing on 16,410 observations of 530 trees of 54 species located between 2066 and 2527 m in elevation. The park's climate is equatorial with two wet and dry seasons each year. Flowering and fruiting were strongly seasonal while patterns in leafing were less pronounced. Flower occurrence peaked at the beginning of the short dry season followed by a pronounced trough during the beginning and the middle of the short wet season. Fruit occurrence had a pronounced peak during high rainfall months in March through April with most fruits ripening during drier months in May through July. Fruit scarcity was observed for a 4-month period spanning September to December and most flushing of leaves noted at the end of the wet season in November and December. Our binomial generalized linear mixed models indicated that flowering and fruiting were negatively associated with temperature and that leafing activity was positively associated with rainfall and temperature. These findings are consistent with the insolation- and water-limitation hypotheses suggesting that the seasonally varying availability of resources such as light, water, and nutrients determines these phenological patterns. Ideally, prolonged, multi-year community-level studies would be supported so as to better characterize the influence of climate and of climate variability.  相似文献   
4.
L1 retroposons are represented in mice by subfamilies of interspersed sequences of varied abundance. Previous analyses have indicated that subfamilies are generated by duplicative transposition of a small number of members of the L1 family, the progeny of which then become a major component of the murine L1 population, and are not due to any active processes generating homology within preexisting groups of elements in a particular species. In mice, more than a third of the L1 elements belong to a clade that became active approximately 5 Mya and whose elements are > or = 95% identical. We have collected sequence information from 13 L1 elements isolated from two species of voles (Rodentia: Microtinae: Microtus and Arvicola) and have found that divergence within the vole L1 population is quite different from that in mice, in that there is no abundant subfamily of homologous elements. Individual L1 elements from voles are very divergent from one another and belong to a clade that began a period of elevated duplicative transposition approximately 13 Mya. Sequence analyses of portions of these divergent L1 elements (approximately 250 bp each) gave no evidence for concerted evolution having acted on the vole L1 elements since the split of the two vole lineages approximately 3.5 Mya; that is, the observed interspecific divergence (6.7%-24.7%) is not larger than the intraspecific divergence (7.9%-27.2%), and phylogenetic analyses showed no clustering into Arvicola and Microtus clades.   相似文献   
5.
Molecular phylogeny and divergence times of drosophilid species   总被引:32,自引:15,他引:17  
The phylogenetic relationships and divergence times of 39 drosophilid species were studied by using the coding region of the Adh gene. Four genera--Scaptodrosophila, Zaprionus, Drosophila, and Scaptomyza (from Hawaii)--and three Drosophila subgenera--Drosophila, Engiscaptomyza, and Sophophora--were included. After conducting statistical analyses of the nucleotide sequences of the Adh, Adhr (Adh-related gene), and nuclear rRNA genes and a 905-bp segment of mitochondrial DNA, we used Scaptodrosophila as the outgroup. The phylogenetic tree obtained showed that the first major division of drosophilid species occurs between subgenus Sophophora (genus Drosophila) and the group including subgenera Drosophila and Engiscaptomyza plus the genera Zaprionus and Scaptomyza. Subgenus Sophophora is then divided into D. willistoni and the clade of D. obscura and D. melanogaster species groups. In the other major drosophilid group, Zaprionus first separates from the other species, and then D. immigrans leaves the remaining group of species. This remaining group then splits into the D. repleta group and the Hawaiian drosophilid cluster (Hawaiian Drosophila, Engiscaptomyza, and Scaptomyza). Engiscaptomyza and Scaptomyza are tightly clustered. Each of the D. repleta, D. obscura, and D. melanogaster groups is monophyletic. The splitting of subgenera Drosophila and Sophophora apparently occurred about 40 Mya, whereas the D. repleta group and the Hawaiian drosophilid cluster separated about 32 Mya. By contrast, the splitting of Engiscaptomyza and Scaptomyza occurred only about 11 Mya, suggesting that Scaptomyza experienced a rapid morphological evolution. The D. obscura and D. melanogaster groups apparently diverged about 25 Mya. Many of the D. repleta group species studied here have two functional Adh genes (Adh-1 and Adh-2), and these duplicated genes can be explained by two duplication events.   相似文献   
6.
Sulfate reduction and S-oxidation in a moorland pool sediment   总被引:3,自引:2,他引:1  
In an oligotrophic moorland pool in The Netherlands, S cycling near the sediment/water boundary was investigated by measuring (1) SO4 2– reduction rates in the sediment, (2) depletion of SO4 2– in the overlying water column and (3) release of35S from the sediment into the water column. Two locations differing in sediment type (highly organic and sandy) were compared, with respect to reduction rates and depletion of SO4 2– in the overlying water.Sulfate reduction rates in sediments of an oligotrophic moorland pool were estimated by diagenetic modelling and whole core35SO4 2– injection. Rates of SO4 2– consumption in the overlying water were estimated by changes in SO4 2– concentration over time in in situ enclosures. Reduction rates ranged from 0.27–11.2 mmol m–2 d–1. Rates of SO4 2– uptake from the enclosed water column varied from –0.5, –0.3 mmol m–2 d–1 (November) to 0.43–1.81 mmol m–2 d–1 (July, August and April). Maximum rates of oxidation to SO4 2– in July 1990 estimated by combination of SO4 2– reduction rates and rates of in situ SO4 2– uptake in the enclosed water column were 10.3 and 10.5 mmol m–2 d–1 at an organic rich and at a sandy site respectively.Experiments with35S2– and35SO4 2– tracer suggested (1) a rapid formation of organically bound S from dissimilatory reduced SO4 2– and (2) the presence of mainly non SO4 2–-S derived from reduced S transported from the sediment into the overlying water. A35S2– tracer experiment showed that about 7% of35S2– injected at 1 cm depth in a sediment core was recovered in the overlying water column.Sulfate reduction rates in sediments with higher volumetric mass fraction of organic matter did not significantly differ from those in sediments with a lower mass fraction of organic matter.Corresponding author  相似文献   
7.
Lowland rainforests on Borneo are being degraded and lost at an alarming rate. Studies on mammals report species responding in various ways to habitat changes that occur in commercial forestry concessions. Here we draw together information on the relationship between the ecological, evolutionary, and biogeographic characteristics of selected Bornean non-volant mammals, and their response to timber harvesting and related impacts. Only a minority of species show markedly reduced densities after timber harvesting. Nonetheless there are many grounds for concern as various processes can, and often do, reduce the viability of wildlife populations. Our review of what we know, and of current understanding, helps predict mammalian dynamics and subsequent mammal-induced ecosystem changes in logged forests. We identify groups of mammal species that, although largely unstudied, are unlikely to tolerate the impacts associated with timber harvesting. On a positive note we find and suggest many relatively simple and low-cost ways in which concession management practices might be modified so as to improve the value of managed forests for wildlife conservation. Improving forest management can play a vital role in maintaining the rich biodiversity of Borneo’s tropical rain forests.  相似文献   
8.
1. Predation‐exclusion experiments have highlighted that top‐down control is pervasive in terrestrial communities, but most of these experiments are simplistic in that they only excluded a single group of predators and the effect of removal was evaluated on a few species from the community. The main goal of our study was to experimentally establish the relative effects of ants and birds on the same arthropod assemblage of canopy trees. 2. We conducted 1‐year long manipulative experiments in an organic citrus grove intended to quantify the independent effects of bird and ant predators on the abundance of arthropods. Birds were excluded with plastic nets whereas ants were excluded with sticky barriers on the trunks. The sticky barrier also excluded other ground dwelling insects, like the European earwig Forficula auricularia L. 3. Both the exclusion of ants and birds affected the arthropod community of the citrus canopies, but the exclusion of ants was far more important than the exclusion of birds. Indeed, almost all groups of arthropods had higher abundance in ant‐excluded than in control trees, whereas only dermapterans were more abundant in bird‐excluded than in control trees. A more detailed analysis conducted on spiders also showed that the effect of ant exclusion was limited to a few families rather than being widespread over the entire diverse spectrum of spiders. 4. Our results suggest that the relative importance of vertebrate and invertebrate predators in regulating arthropod populations largely depends on the nature of the predator–prey system.  相似文献   
9.
The understanding of global diversity patterns has benefitted from a focus on functional traits and how they relate to variation in environmental conditions among assemblages. Distant communities in similar environments often share characteristics, and for tropical forest mammals, this functional trait convergence has been demonstrated at coarse scales (110–200 km resolution), but less is known about how these patterns manifest at fine scales, where local processes (e.g. habitat features and anthropogenic activities) and biotic interactions occur. Here, we used standardized camera trapping data and a novel analytical method that accounts for imperfect detection to assess how the functional composition of terrestrial mammal communities for two traits – trophic guild and body mass – varies across 16 protected areas in tropical forests and three continents, in relation to the extent of protected habitat and anthropogenic pressures. We found that despite their taxonomic differences, communities generally have a consistent trophic guild composition, and respond similarly to these factors. Insectivores were found to be sensitive to the size of protected habitat and surrounding human population density. Body mass distribution varied little among communities both in terms of central tendency and spread, and interestingly, community average body mass declined with proximity to human settlements. Results indicate predicted trait convergence among assemblages at the coarse scale reflects consistent functional composition among communities at the local scale, suggesting that broadly similar habitats and selective pressures shaped communities with similar trophic strategies and responses to drivers of change. These similarities provide a foundation for assessing assemblages under anthropogenic threats and sharing conservation measures.  相似文献   
10.
王华东  曹文杰  张民  付振帅  刘道营  李耀胜 《生物磁学》2013,(25):4929-4931,4912
目的:早期液体复苏对感染性休克患者血流动力学的影响。方法:选取2012年2月-2013年2月我院ICU收治的26例感染性休克患者作为研究对象,随机分为对照组和试验组,各13例。两组患者均采用PICCO监测,并根据早期复苏目标导向(Earlygoaldirectedtherapy,EGDT)进行早期液体复苏治疗。对照组和试验组复苏液分别为林格液和6%羟乙基淀粉130/0.4氯化钠溶液。分别于复苏开始时(Oh)、8h和24h收集患者的血流动力学参数。结果:两组患者CO及PAWP水平均随着时间的延长下降,而CI、CVP及SVR水平均随着时间的增加上升。除对照组CI外,与开始复苏(oh)相比较试验组和对照组的C0、CI、CVP、SVR及PAWP与开始复苏(O小时)相比较均有显著差异(P值均〈0.05)。经重复测量资料的.方差分析进行比较发现,与对照组相比较,试验组CVP和SVR上升水平及PAWP下降水平明显,差异具有统计学意义(P值均〈0.05)。结论:感染性休克患者使用6%羟乙基淀粉130/0.4氯化钠溶液进行复苏,能更好的改善患者的血流动力学指标。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号