首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   1篇
生物科学   72篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2010年   6篇
  2009年   3篇
  2008年   5篇
  2007年   6篇
  2006年   1篇
  2005年   10篇
  2004年   4篇
  2002年   9篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1997年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
1.
The PCR analysis of DNA extracted from soil samples taken in Russian northern taiga and subarctic tundra showed that the DNA extracts contain genes specific to methanotrophic bacteria, i.e., the mmoX gene encoding the conserved alpha-subunit of the hydroxylase component of soluble methane monooxygenase, the pmoA gene encoding the alpha-subunit of particulate methane monooxygenase, and the mxaF gene encoding the alpha-subunit of methanol dehydrogenase. PCR analysis with group-specific primers also showed that methanotrophic bacteria in the northern taiga and subarctic tundra soils are essentially represented by the type I genera Methylobacter, Methylomonas, Methylosphaera, and Methylomicrobium and that some soil samples contain type II methanotrophs close to members of the genera Methylosinus and Methylocystis. The electron microscopic examination of enrichment cultures obtained from the soil samples confirmed the presence of methanotrophic bacteria in the ecosystems studied and showed that the methanotrophs contain only small amounts of intracytoplasmic membranes.  相似文献   
2.
The halotolerant alkaliphilic methanotroph Methylomicrobium buryatense 5B is capable of growth at high methanol concentrations (up to 1.75 M). At optimal values of pH and salinity (pH 9.5 and 0.75% NaCl), the maximum growth rate on 0.25 M methanol (0.2 h-1) was twice as high as on methane (0.1 h-1). The maximum growth rate increased with increasing medium salinity and was lower at neutral than at alkaline pH. The growth of the bacterium on methanol was accompanied by a reduction in the degree of development of intracytoplasmic membranes, the appearance of glycogen granules in cells, and the accumulation of formaldehyde, formate, and an extracellular glycoprotein at concentrations of 1.2 mM, 8 mM, and 2.63 g/l, respectively. The glycoprotein was found to contain 23% protein and 77% carbohydrates, the latter being dominated by glucose, mannose, and aminosugars. The major amino acids were glutamate, aspartate, glycine, valine, and isoleucine. The glycoprotein content rose to 5 g/l when the concentration of potassium nitrate in the medium was augmented tenfold. The activities of sucrose-6-phosphate synthase, glycogen synthase, and NADH dehydrogenase in methanol-grown cells were higher than in methane-grown cells. The data obtained suggest that the high methanol tolerance of M. buryatense 5B is due to the utilization of formaldehyde for the synthesis of sucrose, glycogen, and the glycoprotein and to the oxidation of excess reducing equivalents through the respiratory chain.  相似文献   
3.
Representatives of the genus Beijerinckia are known as heterotrophic, dinitrogen-fixing bacteria which utilize a wide range of multicarbon compounds. Here we show that at least one of the currently known species of this genus, i.e., Beijerinckia mobilis, is also capable of methylotrophic metabolism coupled with the ribulose bisphosphate (RuBP) pathway of C1 assimilation. A complete suite of dehydrogenases commonly involved in the sequential oxidation of methanol via formaldehyde and formate to CO2 was detected in cell extracts of B. mobilis grown on CH3OH. Carbon dioxide produced by oxidation of methanol was further assimilated via the RuBP pathway as evidenced by reasonably high activities of phosphoribulokinase and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). Detection and partial sequence analysis of genes encoding the large subunits of methanol dehydrogenase (mxaF) and form I RubisCO (cbbL) provided genotypic evidence for methylotrophic autotrophy in B. mobilis.  相似文献   
4.
L-2,4-Diaminobutyrate (DAB) acetyltransferase (DABAcT) catalyzes one of the key reactions of biosynthesis of the bacterial osmoprotectant ectoine--acetylation of L-2,4-DAB yielding Ngamma-acetyl-2,4-DAB. Gene ectA encoding DABAcT was cloned from DNA of the halotolerant methanotroph Methylomicrobium alcaliphilum 20Z and expressed in Escherichia coli with an additional six His residues at the C-terminus. Homogeneous enzyme preparation with specific activity 200 U/mg was obtained by affinity metal-chelating chromatography. DABAcT was found to be a homodimer with molecular mass 40 kD. The enzyme is most active at pH 9.5 and 20 degrees C, and its activity increased threefold in the presence of 0.1-0.2 M NaCl or 0.2 M KCl. The Km values of recombinant DABAcT measured at the optimal pH and temperature in the presence of 0.2 M KCl were 460 and 36.6 microM for L-2,4-DAB and acetyl-CoA, respectively. The enzyme is specific for L-2,4-DAB and acetyl-CoA and is also active against propionyl-CoA (20%). Zn2+ and Cd2+ at 1 mM concentration completely inhibit the recombinant enzyme; 10 mM ATP inhibits 26% of the enzyme activity, whereas EDTA, o-phenanthroline, ADP, NAD(P), and NAD(P)H do not significantly effect the enzyme activity. The possible participation of DABAcT in regulation of ectoine biosynthesis in M. alcaliphilum 20Z is discussed.  相似文献   
5.
Two pure cultures of obligate methanotrophs, strains H-11 and 0-12, growing in the temperature range from 30 to 61 degrees C with an optimum at 55 degrees C were isolated from samples of silage and manure. Based on the results of analysis of the 16S rRNA genes, membrane-bound methane monooxygenase, and phenotypic properties, the isolates were assigned to the genus Methylocaldum. Significant temperature-dependent variations in morphology and phospholipid and fatty acid composition were revealed. Both strains assimilated methane carbon via the ribulose monophosphate, serine, and ribulose bisphosphate pathways. The activity of hexulose phosphate synthase was independent of the cultivation temperature; however, the activities of hydroxypyruvate reductase and ribulose bisphosphate carboxylase were higher in cells grown at 55 degrees C that in cells grown at 37 degrees C, indicating the important roles of the serine and ribulose bisphosphate pathways in the thermoadaptation of the strains under study. NH4+ assimilation occurred through reductive amination of alpha-ketoglutarate and via the glutamate cycle. The relationship between the physiological-biochemical peculiarities of the isolates and their thermophilic nature is discussed.  相似文献   
6.
Methane-utilizing bacteria were enriched from deep igneous rock environments and affiliated by amplification of functional and phylogenetic gene probes. Type I methanotrophs belonging to the genera Methylomonas and Methylobacter dominated in enrichment cultures from depths below 400 m. A pure culture of an obligate methanotroph (strain SR5) was isolated and characterized. Pink-pigmented motile rods of the new isolate contained intracytoplasmic membranes as stacks of vesicles, assimilated methane via the ribulose monophosphate pathway and had an incomplete tricarboxylic acid cycle. Phosphatidyl glycerol, methylene ubiquinone and cytochrome c552 were prevailing. The DNA G+C content is 53.3 mol %. Strain SR5 grew at temperatures between 5 and 30 degrees C with optimum at 15 degrees C, close to its in situ temperature. Analyses of 16S rRNA gene, whole cell protein, enzymatic and physiological analyses of strain SR-5 revealed significant differences compared to the other representatives of Type I methanotrophs. Based on pheno- and genotypic characteristics we propose to refer the strain SR5 as to a new species, Methylomonas scandinavica.  相似文献   
7.
Five strains of obligate methanotrophic bacteria (4G, 5G, 6G, 7G and 5B) isolated from bottom sediments of Southeastern Transbaikal soda lakes (pH 9.5-10.5) are taxonomically described. These bacteria are aerobic, Gram-negative monotrichous rods having tightly packed cup-shaped structures on the outer cell wall surface (S-layers) and Type I intracytoplasmic membranes. All the isolates possess particulate methane monooxygenase (pMMO) and one strain (5G) also contains soluble methane monooxygenase (sMMO). They assimilate methane and methanol via the ribulose monophosphate pathway (RuMP). The isolates are alkalitolerant or facultatively alkaliphilic, able to grow at pH 10.5-11.0 and optimally at pH 8.5-9.5. These organisms are obligately dependent on the presence of sodium ions in the growth medium and tolerate up to 0.9-1.4 M NaCl or 1 M NaHCO3. Although being mesophilic, all the isolates are resistant to heating (80 degrees C, 20 min), freezing and drying. Their cellular fatty acids profiles primarily consist of C(16:1). The major phospholipids are phosphatidylethanolamine and phosphatidylglycerol. The main quinone is Q-8. The DNA G+C content ranges from 49.2-51.5 mol %. Comparative 16S rDNA sequencing showed that the newly isolated methanotrophs are related to membres of the Methylomicrobium genus. However, they differ from the known members of this genus by DNA-DNA relatedness. Based on pheno- and genotypic characteristics, we propose a new species of the genus Methylomicrobium Methylomicrobium buryatense sp. nov.  相似文献   
8.
In the aerobic methanotrophic bacteria Methylomicrobium alcaliphilum 20Z, Methylococcus capsulatus Bath, and Methylosinus trichosporium OB3b, the biochemical properties of hydroxypyruvate reductase (Hpr), an indicator enzyme of the serine pathway for assimilation of reduced C1-compounds, were comparatively analyzed. The recombinant Hpr obtained by cloning and heterologous expression of the hpr gene in Escherichia coli catalyzed NAD(P)H-dependent reduction of hydroxypyruvate or glyoxylate, but did not catalyze the reverse reactions of D-glycerate or glycolate oxidation. The absence of the glycerate dehydrogenase activity in the methanotrophic Hpr confirmed a key role of the enzyme in utilization of C1-compounds via the serine cycle. The enzyme from Ms. trichosporium OB3b realizing the serine cycle as a sole assimilation pathway had much higher special activity and affinity in comparison to Hpr from Mm. alcaliphilum 20Z and Mc. capsulatus Bath assimilating carbon predominantly via the ribulose monophosphate (RuMP) cycle. The hpr gene was found as part of gene clusters coding the serine cycle enzymes in all sequenced methanotrophic genomes except the representatives of the Verrucomicrobia phylum. Phylogenetic analyses revealed two types of Hpr: (i) Hpr of methanotrophs belonging to the Gammaproteobacteria class, which use the serine cycle along with the RuMP cycle, as well as of non-methylotrophic bacteria belonging to the Alphaproteobacteria class; (ii) Hpr of methylotrophs from Alpha- and Betaproteobacteria classes that use only the serine cycle and of non-methylotrophic representatives of Betaproteobacteria. The putative role and origin of hydroxypyruvate reductase in methanotrophs are discussed.  相似文献   
9.
Moderately thermophilic methanotrophs Methylocaldum szegediense O-12 and Methylococcus capsulatus Bath exhibit activities of antioxidant protection enzymes: glutathione peroxidase, superoxide dismutase, and cytochrome c peroxidase. The cells of methanotrophs grown at optimal temperatures (57 or 45°C, respectively) produce reactive oxygen species more actively than those grown at suboptimal temperatures, and exhibit higher activities of the membrane-associated cytochrome c peroxidase. Glutathione, glutathione peroxidase, and glucose-6-phosphate dehydrogenase levels in Md. szegediense O-12 increased in response to lowering of the cultivation temperature. By contrast, glutathione accumulation in cells of Mc. capsulatus Bath and the activity of glutathione peroxidase at a suboptimal temperature (29°C) were lower than at the optimal one. The role of the multilevel system of antioxidant protection in the adaptation of methanotrophs to temperature fluctuations is discussed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号