首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11936篇
  免费   818篇
  国内免费   1篇
生物科学   12755篇
  2023年   49篇
  2022年   51篇
  2021年   218篇
  2020年   149篇
  2019年   216篇
  2018年   245篇
  2017年   225篇
  2016年   301篇
  2015年   482篇
  2014年   531篇
  2013年   654篇
  2012年   1029篇
  2011年   1575篇
  2010年   818篇
  2009年   848篇
  2008年   599篇
  2007年   563篇
  2006年   543篇
  2005年   448篇
  2004年   484篇
  2003年   435篇
  2002年   402篇
  2001年   184篇
  2000年   148篇
  1999年   140篇
  1998年   113篇
  1997年   91篇
  1996年   78篇
  1995年   79篇
  1994年   57篇
  1993年   39篇
  1992年   72篇
  1991年   72篇
  1990年   58篇
  1989年   40篇
  1988年   45篇
  1987年   47篇
  1986年   40篇
  1985年   43篇
  1984年   61篇
  1983年   42篇
  1982年   35篇
  1981年   45篇
  1980年   42篇
  1979年   28篇
  1978年   32篇
  1977年   28篇
  1974年   31篇
  1973年   31篇
  1970年   27篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
A number of flavonoids isolated from Lonchocarpus spp. were evaluated for their antiprotozoal and cytotoxic activity. Flavone 6 and chalcone 7 were found to be the most active against Leishmania parasites and against cell cultures of Leukemia P388DI and adenocarcinoma prostate PC-3.  相似文献   
3.
4.
Flow cytometer measurements were made of the basal variations in peripheral blood functional monocytes and granulocytes over the course of a training season (January to November) of a cycling team. Parallel determinations were made of plasma concentration of catecholamines (chromatography) and cortisol (RIA) in a search for neuroendocrine markers. The results showed the greatest phagocytic capacity to occur in the central months (March, May, and July), coinciding with the greatest number and highest level of competitive events with good correlation with a peak in epinephrine during these months (r(2) = 0.998 for monocytes and r(2) = 0.674 for granulocytes). No good correlations were found between phagocytosis and norepinephrine or cortisol. The highest values for phagocytosis and epinephrine concentration were found in May. These results suggest that blood epinephrine concentration could be a good neuroendocrine marker of sportspeople's phagocytic response.  相似文献   
5.
Germ-free (GF) and conventional (CV) C3H mice received a single injection of 1 μCi [3H]thymidine and 3 μCi [125I]iododeoxyuridine to provide simultaneous labeling of DNA with the two precursors. Thymus, spleen, mesenteric lymph nodes, bone marrow (femora), small intestine, colon and skin were examined for total organ activity and rate of DNA renewal 1–8 days after injection. Precursor incorporation, assayed on day 1, was lower in the thymus, mesenteric lymph nodes and femora (and, to a lesser extent, in the spleen and colon) of GF mice as compared to CV animals. The opposite was observed in the small intestine and skin, i.e. total organ activity was higher in GF animals. Differences in precursor incorporation were partly due to differences in organ weights between the two groups of mice. In comparison to CV animals, DNA renewal rates were diminished in the mesenteric lymph nodes, bone marrow, colon (following a 3-day plateau) and spleen of GF mice. Little, if any, difference was observed between the two groups with respect to the rate of DNA turnover in the thymus and skin. Radioactivity of the small intestine remained constant for 2 days. Thereafter intestinal activity in GF mice declined at an initial slow rate between days 2 and 5 followed by a rapid decrease between days 5 and 8. In CV mice the first phase of activity loss was short with the rapid decline in intestinal activity beginning on day 3. From the slopes of the regression lines, the percentage thymidine reutilization was estimated. Reutilization varied from 0 to 63% in the various organs examined, with the greatest difference between GF and CV mice occurring in the mesenteric lymph nodes.  相似文献   
6.
7.
The binding of norepinephrine (NE) to plasma proteins of fresh human blood obtained from healthy volunteers was studied by ultrafiltration at different NE concentrations and incubation times at 37 degrees C. At 1.7 nM L-[3H]-NE binding was approximately 25%. The binding was rapid and was not influenced by the incubation time. [3H]-NE could be dissociated from its binding sites by acid precipitation and, after HPLC, showed to be unchanged NE. No difference in NE binding was found between plasma collected in EGTA-GSH or heparin solution. There was no degradation of NE when incubated in plasma at 37 degrees C for 10 h, even without the addition of antioxidants. Therefore, in the present study, binding represented interaction of unchanged NE with plasma proteins. The whole plasma binding was saturable over the range of 0.66 nM to 0.59 mM of NE. Scatchard plot of specific binding revealed high-affinity sites with a Kd of 5.4 nM and a Bmax of 3.9 fmoles.mg-1 protein, and low-affinity sites with a Kd of 2.7 microM and a Bmax of 3.3 pmoles.mg-1 protein. Electrophoretic characterization of NE-binding proteins showed that about 60% of bound NE was associated to albumin, and 20% to prealbumin. NE binding to pure human plasma proteins was also studied using ultrafiltration. Scatchard analyses revealed a single class of very high-affinity binding sites for prealbumin (Kd 4.9 nM), a single class of binding sites for alpha 1-acid glycoprotein (Kd 54 microM) and two classes of binding sites for albumin with high (Kd 1.7 microM) and low (Kd 0.8 mM) affinities respectively. The main results obtained in this study - a) reversibility of NE binding, b) stability of free and bound NE in plasma, c) involvement of the prealbumin as a specific binding protein - point out to a specific transport for NE in human blood plasma.  相似文献   
8.
Alternative splicing of 3′-terminal exons plays a critical role in gene expression by producing mRNA with distinct 3′-untranslated regions that regulate their fate and their expression. The Xenopus α-tropomyosin pre-mRNA possesses a composite internal/3′-terminal exon (exon 9A9′) that is differentially processed depending on the embryonic tissue. Exon 9A9′ is repressed in non-muscle tissue by the polypyrimidine tract binding protein, whereas it is selected as a 3′-terminal or internal exon in myotomal cells and adult striated muscles, respectively. We report here the identification of an intronic regulatory element, designated the upstream terminal exon enhancer (UTE), that is required for the specific usage of exon 9A9′ as a 3′-terminal exon in the myotome. We demonstrate that polypyrimidine tract binding protein prevents the activity of UTE in non-muscle cells, whereas a subclass of serine/arginine rich (SR) proteins promotes the selection of exon 9A9′ in a UTE-dependent way. Morpholino-targeted blocking of UTE in the embryo strongly reduced the inclusion of exon 9A9′ as a 3′-terminal exon in the endogenous mRNA, demonstrating the function of UTE under physiological circumstances. This strategy allowed us to reveal a splicing pathway that generates a mRNA with no in frame stop codon and whose steady-state level is translation-dependent. This result suggests that a non-stop decay mechanism participates in the strict control of the 3′-end processing of the α-tropomyosin pre-mRNA.  相似文献   
9.
10.
The 10-subunit RNA exosome is involved in a large number of diverse RNA processing and degradation events in eukaryotes. These reactions are carried out by the single catalytic subunit, Rrp44p/Dis3p, which is composed of three parts that are conserved throughout eukaryotes. The exosome is named for the 3′ to 5′ exoribonuclease activity provided by a large C-terminal region of the Rrp44p subunit that resembles other exoribonucleases. Rrp44p also contains an endoribonuclease domain. Finally, the very N-terminus of Rrp44p contains three Cys residues (CR3 motif) that are conserved in many eukaryotes but have no known function. These three conserved Cys residues cluster with a previously unrecognized conserved His residue in what resembles a metal-ion-binding site. Genetic and biochemical data show that this CR3 motif affects both endo- and exonuclease activity in vivo and both the nuclear and cytoplasmic exosome, as well as the ability of Rrp44p to associate with the other exosome subunits. These data provide the first direct evidence that the exosome-Rrp44p interaction is functionally important and also provides a molecular explanation for the functional defects when the conserved Cys residues are mutated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号