首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28463篇
  免费   2538篇
  国内免费   2370篇
生物科学   33371篇
  2023年   346篇
  2022年   471篇
  2021年   1490篇
  2020年   1035篇
  2019年   1307篇
  2018年   1234篇
  2017年   853篇
  2016年   1247篇
  2015年   1849篇
  2014年   2083篇
  2013年   2191篇
  2012年   2625篇
  2011年   2421篇
  2010年   1449篇
  2009年   1308篇
  2008年   1594篇
  2007年   1323篇
  2006年   1203篇
  2005年   1000篇
  2004年   815篇
  2003年   746篇
  2002年   636篇
  2001年   382篇
  2000年   374篇
  1999年   373篇
  1998年   275篇
  1997年   281篇
  1996年   225篇
  1995年   219篇
  1994年   209篇
  1993年   153篇
  1992年   218篇
  1991年   174篇
  1990年   174篇
  1989年   127篇
  1988年   110篇
  1987年   105篇
  1986年   84篇
  1985年   95篇
  1984年   61篇
  1983年   65篇
  1982年   45篇
  1981年   39篇
  1980年   34篇
  1979年   26篇
  1978年   27篇
  1976年   28篇
  1975年   20篇
  1974年   25篇
  1965年   20篇
排序方式: 共有10000条查询结果,搜索用时 566 毫秒
1.
2.
3.
Indirect evidence has suggested that the Msh2-Msh6 mispair-binding complex undergoes conformational changes upon binding of ATP and mispairs, resulting in the formation of Msh2-Msh6 sliding clamps and licensing the formation of Msh2-Msh6-Mlh1-Pms1 ternary complexes. Here, we have studied eight mutant Msh2-Msh6 complexes with defective responses to nucleotide binding and/or mispair binding and used them to study the conformational changes required for sliding clamp formation and ternary complex assembly. ATP binding to the Msh6 nucleotide-binding site results in a conformational change that allows binding of ATP to the Msh2 nucleotide-binding site, although ATP binding to the two nucleotide-binding sites appears to be uncoupled in some mutant complexes. The formation of Msh2-Msh6-Mlh1-Pms1 ternary complexes requires ATP binding to only the Msh6 nucleotide-binding site, whereas the formation of Msh2-Msh6 sliding clamps requires ATP binding to both the Msh2 and Msh6 nucleotide-binding sites. In addition, the properties of the different mutant complexes suggest that distinct conformational states mediated by communication between the Msh2 and Msh6 nucleotide-binding sites are required for the formation of ternary complexes and sliding clamps.  相似文献   
4.
The molecular basis of the substrate specificity of Clostridium histolyticum beta-collagenase was investigated using a combinatorial method. An immobilized positional peptide library, which contains 24,000 sequences, was constructed with a 7-hydroxycoumarin-4-propanoyl (Cop) fluorescent group attached at the N terminus of each sequence. This immobilized peptide library was incubated with C. histolyticum beta-collagenase, releasing fluorogenic fragments in the solution phase. The relative substrate specificity (k(cat)/K(m)) for each member of the library was determined by measuring fluorescence intensity in the solution phase. Edman sequencing was used to assign structure to subsites of active substrate mixtures. Collectively, the substrate preference for subsites (P(3)-P(4)') of C. histolyticum beta-collagenase was determined. The last position on the C-terminal side in which the identity of the amino acids affects the activity of the enzyme is P(4)', and an aromatic side chain is preferred in this position. The optimal P(1)'-P(3)' extended substrate sequence is P(1)'-Gly/Ala, P(2)'-Pro/Xaa, and P(3)'-Lys/Arg/Pro/Thr/Ser. The Cop group in either the P(2) or P(3) position is required for a high substrate activity with C. histolyticum beta-collagenase. S(2) and S(3) sites of the protease play a dominant role in fixing the substrate specificity. The immobilized peptide library proved to be a powerful approach for assessing the substrate specificity of C. histolyticum beta-collagenase, so it may be applied to the study of other proteases of interest.  相似文献   
5.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
6.
7.
8.
Mirror carp were infected with Ichthyophthirius multifiliis (Fouquet) under standardized conditions. The size and number of parasites at selected sites on the body were recorded during the course of the infection. Initial exposure to 40 mature parasites resulted in a mild infection with 100% recovery after 18 days. Recovered fish did not appear to be carriers of the parasite. Exposure to 400 parasites resulted in 100% mortality between 22–25 days. The growth rate of the parasite was linear. Parasites were more numerous in the dorsal surface of the fish than in the lateral or ventral surface. The increase in parasite numbers during the disease was greater in the gills than in the skin.  相似文献   
9.
Neuronal perikarya isolated from developing rat brain cortex were employed for studying the effect of hypothyroidism on RNA and protein synthesis in vitro. Neuronal protein synthesis was inhibited by hypothyroidism during the second week of brain development. Thyroxine treatment in vivo stimulated neuronal protein synthesis in hypothyroid rats. The synthesis of neuronal RNA was depressed by hypothyroidism in 7-day old rats. The inhibition of neuronal protein synthesis due to the lack of thyroid hormaones was restricted to membrane-bound ribosomes. The results suggest that the maturation of the neurone is very sensitive to hormonal imbalance during the critical period of brain development.  相似文献   
10.
One group of sequence variants of Epstein-Barr virus is characterized by a 10-amino-acid deletion within the CTAR-2 functional domain of the latent membrane protein, LMP1. A role for this deletion in enhancing the tumorigenicity of the viral oncogene in rodent fibroblasts was recently demonstrated. We examined the effect of this deletion upon LMP1 function in four human lymphoid cell lines by using three natural variants of LMP1: the prototype B95.8 gene and the CAO and AG876 genes, both of which have codons 343 to 352 of the B95.8-LMP1 deleted. These experiments revealed that LMP1-mediated upregulation of CD40 and CD54 was markedly impaired (by 60 to 90%) with CAO-LMP1 compared with B95.8-LMP1. In contrast, the function of AG876-LMP1 was indistinguishable from that of B95.8-LMP1 in two lines and was only slightly impaired in the other two lines. Activation of NF-κB by CAO-LMP1 was not impaired in any of the lines; rather, activation of an NF-κB reporter by CAO-LMP1 was consistently about twofold greater than the activation with B95.8- or AG876-LMP1. Therefore, while the CAO-LMP1 is functionally distinct from the prototype B95.8-LMP1 in human lymphocytes, the 10-amino-acid deletion appears not to be directly responsible. This conclusion was confirmed by using a B95.8-LMP1 mutant with codons 343 to 352 deleted and chimerae of CAO- and B95.8-LMP1 in which the CTAR-2 domains of these genes were exchanged. Sequences outside the CTAR-2 domain were implicated in the distinct functional characteristics of CAO-LMP1 in human lymphoid cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号