首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   7篇
生物科学   70篇
  2018年   2篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   4篇
  2006年   1篇
  2005年   2篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1992年   2篇
  1989年   1篇
  1988年   3篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   6篇
  1974年   1篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1966年   4篇
  1962年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
1.
The study of messenger RNA in mammalian cells by Northern analysis requires the extraction of intact RNA in pure form. Although a number of reliable techniques have been developed for the purpose, most are fairly complex, involving steps such as ultracentrifugation and multiple extractions with large volumes of phenol and chloroform. When the number of cell samples to be analyzed is large, these techniques can be unwieldy. I now describe an RNA purification procedure which is simple enough to allow handling of a large number of cultured cell samples. It uses safe and inexpensive reagents and produces a high yield of pure total cell RNA, essentially free of DNA and ribonuclease, suitable for Northern analysis. The procedure also allows extraction of intact RNA from human granulocytes, cells which are rich in ribonuclease and contain very low amounts of RNA.  相似文献   
2.
Strand breaks can be produced in the DNA of intact granulocytes by a flux of oxyradicals (O2- and H2O2) generated by tetradecanoylphorbol acetate (TPA) or by a flux of H2O2 generated by glucose oxidase. The mechanism by which such breaks are induced is still uncertain. Lipophilic chelators such as dipyridyl and 1,10-phenanthroline (OP) strongly inhibit strand breaks induced by H2O2, presumably because of their ability to chelate intracellular iron. We now report that dipyridyl also partially inhibits strand breaks in TPA-stimulated granulocytes while a "copper-specific" lipophilic chelator, neocuproine, has no effect. As opposed to these effects, OP increases the number of strand breaks in TPA-stimulated granulocytes. Superoxide dismutase (SOD) (but not catalase) partially blocks this increase. Both the cell-impermeable chelator, EDTA, and neocuproine strongly block the increase also. In fact, in the presence of EDTA, OP behaves like dipyridyl and inhibits strand breaks. Preformed OP2-copper(II) complex causes DNA breaks in TPA-stimulated granulocytes. The paradoxical effect of OP may be explained by assuming that OP may form two different metal complexes, a DNA-damaging complex with copper or an inhibitory complex with iron. If copper(II) and O2- are present, the first complex may form and the net effect may be an increase in strand breaks. If the formation of this complex is prevented by SOD, EDTA, or neocuproine, then OP may complex iron and the net effect may be (like dipyridyl) an inhibition of strand breaks. The source of the copper responsible for the formation of OP2-copper complex is unknown.  相似文献   
3.
8-Hydroxydeoxyguanosine (8-OHdG) is now widely used as a sensitive marker of oxidative damage to DNA. When human granulocytes are stimulated with TPA, they release a large quantity of reactive oxygen species (superoxide, hydrogen peroxide) which might be expected to generate hydroxyl radicals (OH-) which in turn could produce 8-OHdG in the DNA. There had been considerable debate as to whether OH -is detectable in stimulated granulocytes; most workers now agree that none can be detected, unless exogenous iron is added. An earlier report had described that 8-OHdG (a marker of OH -) was increased in the DNA of TPA-stimulated, compared to control, granulocytes. We have repeated this experiment and have been unable to reproduce this Finding. We conclude that the amount of 8-OHdG produced in the DNA of TPA-stimulated human ganulocytes is indistinguishable from that seen in control (unstimulated) cells (less than one 8- OHdG/105 dG).  相似文献   
4.
The DNA from many higher organisms contains unexpectedly long runs of pyrimidine nucleotides (polypyrimidines). In mouse cells, these range in size from about 25 to 250 nucleotides and account for about 0.5% of the total DNA. They contain both thymine and cytosine in close to equimolar amounts but few or none are pure thymine or cytosine runs. When native DNA from mouse cells was banded in a CsCl gradient, polypyrimidines were part of DNA molecules of all base compositions. This indicates that, unlike Drosophila melanogaster DNA (Birnboim & Sederoff, 1975), they are not clustered as a satellite component. A procedure for isolating fragments of single-stranded DNA which contain polypyrimidines has been developed. Polypyrimidine sites in DNA are complexed with poly(A,G) and the DNA/poly(A,G) complex is bound to hydroxyapatite. The percentage of DNA which binds is a function of its chain length. A maximum of 60% of the DNA was bound, at lengths of > 15 × 103 bases2. We conclude that polypyrimidine sites are distributed throughout the majority of the mouse genome at intervals of 12 to 15 × 103 bases.  相似文献   
5.
A preparative procedure for obtaining highly purified plasmid DNA from bacterial cells is described. The method is adapted from our earlier procedure, which gave partially purified plasmid in a form suitable for rapid screening of a large number of samples. In the present method, all detectable RNA, chromosomal DNA, and protein are removed without the use of enzymes, phenol extraction, dialysis, or equilibrium centrifugation. Binding of plasmid DNA to glass powder in the presence of 6 m sodium perchlorate is used for the final purification step.  相似文献   
6.
7.

Background

The ciliary body is the circumferential muscular tissue located just behind the iris in the anterior chamber of the eye. It plays a pivotal role in the production of aqueous humor, maintenance of the lens zonules and accommodation by changing the shape of the crystalline lens. The ciliary body is the major target of drugs against glaucoma as its inhibition leads to a drop in intraocular pressure. A molecular study of the ciliary body could provide a better understanding about the pathophysiological processes that occur in glaucoma. Thus far, no large-scale proteomic investigation has been reported for the human ciliary body.

Results

In this study, we have carried out an in-depth LC-MS/MS-based proteomic analysis of normal human ciliary body and have identified 2,815 proteins. We identified a number of proteins that were previously not described in the ciliary body including importin 5 (IPO5), atlastin-2 (ATL2), B-cell receptor associated protein 29 (BCAP29), basigin (BSG), calpain-1 (CAPN1), copine 6 (CPNE6), fibulin 1 (FBLN1) and galectin 1 (LGALS1). We compared the plasma proteome with the ciliary body proteome and found that the large majority of proteins in the ciliary body were also detectable in the plasma while 896 proteins were unique to the ciliary body. We also classified proteins using pathway enrichment analysis and found most of proteins associated with ubiquitin pathway, EIF2 signaling, glycolysis and gluconeogenesis.

Conclusions

More than 95% of the identified proteins have not been previously described in the ciliary body proteome. This is the largest catalogue of proteins reported thus far in the ciliary body that should provide new insights into our understanding of the factors involved in maintaining the secretion of aqueous humor. The identification of these proteins will aid in understanding various eye diseases of the anterior segment such as glaucoma and presbyopia.  相似文献   
8.

Background

Activation by extracellular ligands of G protein-coupled (GPCRs) and tyrosine kinase receptors (RTKs), results in the generation of second messengers that in turn control specific cell functions. Further, modulation/amplification or inhibition of the initial signalling events, depend on the recruitment onto the plasma membrane of soluble protein effectors. High throughput methodologies to monitor quantitatively second messenger production, have been developed over the last years and are largely used to screen chemical libraries for drug development. On the contrary, no such high throughput methods are yet available for the other aspect of GPCRs regulation, i.e. protein translocation to the plasma membrane, despite the enormous interest of this phenomenon for the modulation of receptor downstream functions. Indeed, to date, the experimental procedures available are either inadequate or complex and expensive.

Results

Here we describe the development of a novel conceptual approach to the study of cytosolic proteins translocation to the inner surface of the plasma membrane. The basis of the technique consists in: i) generating chimeras between the protein of interests and the calcium (Ca2+)-sensitive, luminescent photo-protein, aequorin and ii) taking advantage of the large Ca2+ concentration [Ca2+] difference between bulk cytosolic and the sub-plasma membrane rim.

Conclusion

This approach, that keeps unaffected the translocation properties of the signalling protein, can in principle be applied to any protein that, upon activation, moves from the cytosol to the plasma membrane. Thus, not only the modulation of GPCRs and RTKs can be investigated in this way, but that of all other proteins that can be recruited to the plasma membrane also independently of receptor activation. Moreover, its automated version, which can provide information about the kinetics and concentration-dependence of the process, is also applicable to high throughput screening of drugs affecting the translocation process.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号