首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
地球科学   49篇
  2021年   5篇
  2020年   3篇
  2018年   5篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2006年   3篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
排序方式: 共有49条查询结果,搜索用时 78 毫秒
1.
The favourable agroclimatic conditions for orchards especially apples have increased the acreages in Himachal Pradesh (HP) which has significantly contributed in the growth of state economy. Realizing the importance of horticulture in HP and its changing scenario of the land use/land cover, a study was conducted to identify and map apple and almond plantations in the Kumarsain tehsil of Shimla district using Remote Sensing (RS) techniques. IRS-IB LISS-II False Colour Composite (FCC) diapositives of October 27, March 30 and April 20, 1992 were visually analysed for mapping apple and almond plantations. The results indicate that IRS LISS-II data of April 20 on 1∶50,000 scale was found very useful for identification and mapping of apple and almond plantations in this region. Accuracy of interpretation was also tested on sample basis assuming a binomial distribution for the probability of success/failure of sample points. The overall interpretation accuracy assessed based on 40 sample points was found to be 87 per cent at 90 per cent confidence limits.  相似文献   
2.
Singular Value Decomposition (SVD) model is implemented to recognize the Total Electron Content (TEC) time series of daily, temporal as well as seasonal characteristics throughout the 24th solar cycle period of the year 2015 in the study. The Vertical (vTEC) analysis has been carried out with Global Positioning System (GPS) data sets collected from five stations from India namely GNT, Guntur (16.44° N, 80.62° E), and IISC, Bangalore (12.97° N, 77.59° E), LCK2, Lucknow (26.76° N, 80.88° E), one station from Thailand namely AITB, Bangkok (14.07° N, 100.61° E), and one station from South Andaman Island namely PBR, Port Blair (11.43° N, 92.43° E), located in low latitude region. The first five singular value modes constitute about 98% of the total variance, which are linearly transformed from the observed TEC data sets. So it is viable to decrease the number of modeling parameters. The Fourier Series Analysis (FSA) is carried out to characterize the solar-cycle, annual and semi-annual dependences through modulating the first three singular values by the solar (F10.7) and geomagnetic (Ap) indices. The positive correlation coefficient (0.75) of daily averaged GPS–TEC with daily averaged F10.7 strongly supports the temporal variations of the ionospheric features depends on the solar activity. Further, the significance and reliability of the SVD model is evaluated by comparing it with GPS–TEC data and the standard global model (Standard Plasma-Spherical Ionospheric Model, SPIM and International Reference Ionosphere, IRI 2016).  相似文献   
3.
Objective of this study was to identify stripe rust affected areas of wheat crop as well as evaluation of remote sensing (RS) derived indices. Moderately low temperature and high humidity favour the growth of yellow rust. Most affected areas of Punjab are the foothill districts such as Gurdaspur, Hoshiarpur and Ropar. Occurrence of yellow rust is possible when maximum temperature for day is below 15 °C and Temperature difference of day’s maximum and minimum temperature is less than 5 °C during the early growth of wheat. Forecast of the infestation was done using 3 days forecast of weather data obtained from Weather Research and Forecasting (WRF) model at 5 km resolution. Weather forecast used was obtained from Meteorological and Oceanographic Satellite Data Archival System (MOSDAC) site and post infestation, identification of specific locations were done using multi-date IRS AWiFS data. It is an attempt for early detection through 3 days advance forewarning of weather which will be handy tool for planners to expedite relief measures in case of epidemic with a more focused zones of infestation as well as for crop insurers to know the location and extent of damage affected areas.  相似文献   
4.
5.
In a warming climate, atmospheric wave activity and associated weather patterns may change, although conflicting results have been reported on this topic. Additionally, atmospheric wave changes in a future climate have mainly focused on waves of a specified spatial scale, rather than a particular spatiotemporal scale. Here, changes in the variability of Rossby waves of multiple spatiotemporal scales are analyzed using the wavenumber-frequency power spectrum, a tool commonly applied to analyze atmospheric equatorial waves. Daily 500 hPa geopotential height data over 40°–60°N from historical (1950–2005) and future (2006–2099) simulations from 20 models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) under the RCP8.5 scenario were analyzed. When compared to the historical period, the late 21st century climate projections showed a decline in spectral power for both eastward and westward propagating waves with wavenumbers greater than 8 that spanned over all frequencies in all seasons, but an increase in mean power for eastward propagating waves with wavenumbers 1–7 over all frequencies was shown in winter and spring. This increase in power was accompanied by increased variance, i.e., an increased meridional extent of 500 hPa ridges and troughs, and was the result of increases in the mean number of high amplitude events and duration of activity within this wave band. These results indicate that large-scale (~ 104 km) eastward propagating weather systems may intensify with higher amplitudes for ridges and troughs, while short-scale (102–103 km) weather systems may decrease in their intensity due to reduced variability in the late 21st century under the high emissions scenario. Potential mechanisms for these changes are discussed, including enhanced Arctic warming and midlatitude-tropical interactions.  相似文献   
6.
This paper deals with the general class of Bianchi cosmological models with bulk viscosity and particle creation described by full causal thermodynamics in Brans-Dicke theory. We discuss three types of average scale-factor solutions for the general class of Bianchi cosmological models by using a special law for the deceler- ation parameter which is linear in time with a negative slope. The exact solutions to the corresponding field equations are obtained in quadrature form and solutions to the Einstein field equations are obtained for three different physically viable cosmologies. All the physical parameters are calculated and discussed in each model.  相似文献   
7.
Determination of hydraulic head, H, as a function of spatial coordinates and time, in ground water flow is the basis for aquifer management and for prediction of contaminant transport. Several computer codes are available for this purpose. Spatial distribution of the transmissivity, T(x,y), is a required input to these codes. In most aquifers, T varies in an erratic manner, and it can be characterized statistically in terms of a few moments: the expected value, the variance, and the variogram. Knowledge of these moments, combined with a few measurements, permits one to estimate T at any point using geostatistical methods. In a review of transmissivity data from 19 unconsolidated aquifers, Hoeksema and Kitanidis (1985) identified two types of the logtransmissivity Y= ln(T) variations: correlated variations with variance sigma2Yc and correlation scale, I(Y), on the order of kilometers, and uncorrelated variations with variance sigma2Yn. Direct identification of the logtransmissivity variogram, Gamma(Y), from measurements is difficult because T data are generally scarce. However, many head measurements are commonly available. The aim of the paper is to introduce a methodology to identify the transmissivity variogram parameters (sigma2Yc, I(Y), and sigma2Yn) using head data in formations characterized by large logtransmissivity variance. The identification methodology uses a combination of precise numerical simulations (carried out using analytic element method) and a theoretical model. The main objective is to demonstrate the application of the methodology to a regional ground water flow in Eagle Valley basin in west-central Nevada for which abundant transmissivity and head measurements are available.  相似文献   
8.
After decades of pressure from vulnerable developing countries, the Warsaw International Mechanism on Loss and Damage (the WIM) was established at the nineteenth Conference of the Parties (COP 19) in 2013 to address costly damages from climate change. However, little progress has been made towards establishing a mechanism to fund loss and damage. The WIM's Executive Committee issued its first two-year workplan the following year at COP 20 which offered, among other things, a range of approaches to financing loss and damage programmes, which we review here. We provide brief overviews of each mechanism proposed by the WIM ExCom, describe their current applications, their statuses under the United Nations Framework Convention on Climate Change (UNFCCC), some of their advantages and disadvantages, and their current or potential application to loss and damage. We find that several of these mechanisms may be useful in supporting loss and damage programmes, but identify some key gaps. First, most of the mechanisms identified by the WIM ExCom are insurance schemes subsidized with voluntary contributions, which may not be adequate or reliable over time. Second, none were devised to apply to slow-onset events, or to non-economic losses and damages. That is, if harms are inflicted on parts of a society or its ecosystems that have no price, or if they occur gradually, they would probably not be covered by these mechanisms. Finally, the lack of a dedicated and adequate flow of finance to address the real loss and damage being experienced by vulnerable nations will require the use of innovative financial tools beyond those mentioned in the WIM ExCom workplan.

Key policy insights

  • Despite a full article of the 2015 Paris Agreement devoted to loss and damage, there is little international agreement on the scope of loss and damage programmes, and especially how they would be funded and by whom.

  • Most of the loss and damage funding mechanisms identified by the WIM ExCom are insurance schemes subsidized with voluntary contributions, which may burden the most vulnerable countries and may not be reliable over time.

  • None of the mechanisms were devised to apply to slow-onset events, or to non-economic losses and damages.

  相似文献   
9.
Climate change is associated with earth radiation budget that depends upon incoming solar radiation, surface albedo and radiative forcing by greenhouse gases. Human activities are contributing to climate change by causing changes in Earth’s atmosphere (greenhouse gases, aerosols) and biosphere (deforestation, urbanization, irrigation). Long term and precise measurements from calibrated global observation constellation is a vital component in climate system modelling. Space based records of biosphere, cryosphere, hydrosphere and atmosphere over more than three decades are providing important information on climate change. Space observations are an important source of climate variables due to multi scale simultaneous observation (local, regional, and global scales) capability with temporal revisit in tune with requirements of land, ocean and atmospheric processes. Essential climatic variables that can be measured from space include atmosphere (upper air temperature, water vapour, precipitation, clouds, aerosols, GHGs etc.), ocean (sea ice, sea level, SST, salinity, ocean colour etc.) and land (snow, glacier, albedo, biomass, LAI/fAPAR, soil moisture etc.). India’s Earth Observation Programme addresses various aspects of land, ocean and atmospheric applications. The present and planned missions such as Resourcesat-1, Oceansat-2, RISAT, Megha-Tropiques, INSAT-3D, SARAL, Resourcesat-2, Geo-HR Imager and series of Environmental satellites (I-STAG) would help in understanding the issues related to climate changes. The paper reviews observational needs, space observation systems and studies that have been carried out at ISRO (Indian Space Research Organization) towards mapping/detecting the indicators of climate change, monitoring the agents of climate change and understanding the impact of climate change, in national perspectives. Studies to assess glacier retreat, changes in polar ice cover, timberline change and coral bleaching are being carried out towards monitoring of climate change indicators. Spatial methane inventories from paddy rice, livestock and wetlands have been prepared and seasonal pattern of CO2, and CO have been analysed. Future challenges in space observations include design and placement of adequate and accurate multi-platform observational systems to monitor all parameters related to various interaction processes and generation of long term calibrated climate data records pertaining to land ocean and atmosphere.  相似文献   
10.
GPS-derived deformation rates in northwestern Himalaya and Ladakh   总被引:1,自引:0,他引:1  
Deformation rates derived from GPS measurements made at two continuously operating stations at Leh (34.1°N, 77.6°E) and Hanle (32.7°N, 78.9°E), and eight campaign sites in the trans-Himalayan Ladakh spanning 11 years (1997–2008), provide a clear picture of the kinematics of this region as well as the convergence rate across northwestern Himalaya. All the Ladakh sites move 32–34 mm/year NE in the ITRF2005 reference frame, and their relative velocities are 13–16 mm/year SW in the Indian reference frame and ~19 mm/year W with reference to the Lhasa IGS station in southeastern Tibet. The results indicate that there is no statistically significant deformation in the 200-km stretch between the continuous sites Leh and Hanle as well as between Leh and Nubra valley sites along the Karakoram fault, whereas the sites in and around the splayed Karakoram fault region indicate surface deformation of 2.5 mm/year. Campaign sites along the Karakoram fault zone indicate a fault parallel surface motion of 1.4–2.5 mm/year in the Tangste and western Panamik segment of the Karakoram fault, which quantifies the best possible GPS-derived dextral slip rate of 3 mm/year along this fault during this 11-year period. Baselines of Ladakh sites show convergence rates of 15–18 mm/year with respect to south India and 12–15 mm/year with respect to Delhi in north India and Almora in the Himalaya ~400 km north-northeast of Delhi. These constitute an arc normal convergence of 12–15 mm/year across the western Himalaya, which is consistent with arc normal convergence all along the Himalayan arc from west to east. Baseline extension rates of 14–16 mm/year between Lhasa and Ladakh sites are consistent with the east–west extension rate of Tibetan Plateau.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号