首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
生物科学   4篇
  2013年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The adipokinetic hormones (AKHs) from 15 species of heteropteran Hemiptera (encompassing eight families, six superfamilies and three infraorders) have been isolated and structurally identified using liquid chromatography coupled with mass spectrometry. None of the structures are novel and all are octapeptides. These peptide sequence data are used, together with the previously available AKH sequence data on Heteroptera, to create a larger dataset for comparative analyses. This results, in total, in AKH sequences from 30 species (spanning 13 families), which are used in a matrix confronted with the current hypotheses on the phylogeny of Heteroptera. The expanded dataset shows that all heteropterans have octapeptide AKHs; three species have two AKHs, whereas the overwhelming majority have only one AKH. From a total of 11 different AKH peptides known from Heteroptera to date, three AKHs occur frequently: Panbo‐red pigment‐concentrating hormone (RPCH) (×10), Schgr‐AKH‐II (×6) and Anaim‐AKH (×4). The heteropteran database also suggests that particular AKH variants are family‐specific. The AKHs of Heteroptera: Pentatomomorpha (all terrestrial) are not present in Nepomorpha (aquatic) and Gerromorpha: Gerridae (semiaquatic); AKHs with a Val in position 2 are absent in the Pentatomomorpha (only AKHs with Leu2 are present), whereas Val2 predominates in the nonterrestrial species. An unexpected diversity of AKH sequences is found in Nepomorpha, Nepoidea, Nepidae and Nepinae, whereas Panbo‐RPCH (which has been identified in all infraorders of decapod crustaceans) is present in all analysed species of Pentatomidae and also in the only species of Tessaratomidae investigated. The molecular evolution of Heteroptera with respect to other insect groups and to crustaceans is discussed  相似文献   
2.
Cloud cover increases the proportion of diffuse radiation reaching the Earth's surface and affects many microclimatic factors such as temperature, vapour pressure deficit and precipitation. We compared the relative efficiencies of canopy photosynthesis to diffuse and direct photosynthetic photon flux density (PPFD) for a Norway spruce forest (25‐year‐old, leaf area index 11 m2 m−2) during two successive 7‐day periods in August. The comparison was based on the response of net ecosystem exchange (NEE) of CO2 to PPFD. NEE and stomatal conductance at the canopy level (Gcanopy) was estimated from half‐hourly eddy‐covariance measurements of CO2 and H2O fluxes. In addition, daily courses of CO2 assimilation rate (AN) and stomatal conductance (Gs) at shoot level were measured using a gas‐exchange technique applied to branches of trees. The extent of spectral changes in incident solar radiation was assessed using a spectroradiometer. We found significantly higher NEE (up to 150%) during the cloudy periods compared with the sunny periods at corresponding PPFDs. Prevailing diffuse radiation under the cloudy days resulted in a significantly lower compensation irradiance (by ca. 50% and 70%), while apparent quantum yield was slightly higher (by ca. 7%) at canopy level and significantly higher (by ca. 530%) in sun‐acclimated shoots. The main reasons for these differences appear to be (1) more favourable microclimatic conditions during cloudy periods, (2) stimulation of photochemical reactions and stomatal opening via an increase of blue/red light ratio, and (3) increased penetration of light into the canopy and thus a more equitable distribution of light between leaves. Our analyses identified the most important reason of enhanced NEE under cloudy sky conditions to be the effective penetration of diffuse radiation to lower depths of the canopy. This subsequently led to the significantly higher solar equivalent leaf area compared with the direct radiation. Most of the leaves in such dense canopy are in deep shade, with marginal or negative carbon balances during sunny days. These findings show that the energy of diffuse, compared with direct, solar radiation is used more efficiently in assimilation processes at both leaf and canopy levels.  相似文献   
3.
Adipokinetic hormone functions that are not associated with insect flight   总被引:1,自引:0,他引:1  
Abstract This review deals with some lesser known functions of adipokinetic hormones (AKHs), specifically those that are not associated directly with flight activity. The data summarized and discussed relate to AKHs in insects that have lost the ability to fly and use exclusively and/or mostly walking for their locomotion; and to activation of pathways that do not lead directly to production and subsequent rapid consumption of energy, but help the insect to combat stress situations. Emphasis is placed on AKH‐stimulated walking activities in Pyrrhocoris apterus, Gryllus bimaculatus, Periplaneta americana and Drosophila mellanogaster; diel fluctuations in AKH activities; the actions of AKH in alternative stress situations in which infection, toxins and other kinds of stressors interact; and the role of AKHs in anabolic processes and egg production. Possible mechanisms of action are proposed when justified by available knowledge.  相似文献   
4.
The role of adipokinetic hormone (AKH) in counteracting oxidative stress elicited in the insect body is studied in response to exogenously applied hydrogen peroxide, an important metabolite of oxidative processes. In vivo experiments reveal that the injection of hydrogen peroxide (8 µmol) into the haemocoel of the firebug, Pyrrhocoris apterus L. (Heteroptera: Pyrrhocoridae) increases the level of AKH by 2.8‐fold in the central nervous system (CNS) and by 3.8‐fold in the haemolymph. The injection of hydrogen peroxide also increases the mortality of experimental insects, whereas co‐injection of hydrogen peroxide with Pyrap‐AKH (40 pmol) reduces mortality to almost control levels. Importantly, an increase in haemolymph protein carbonyl levels (i.e. an oxidative stress biomarker) elicited by hydrogen peroxide is decreased by 3.6‐fold to control levels when hydrogen peroxide is co‐injected with Pyrap‐AKH. Similar results are obtained using in vitro experiments. Oxidative stress biomarkers such as malondialdehyde and protein carbonyls are significantly enhanced upon exposure of the isolated CNS to hydrogen peroxide in vitro, whereas co‐treatment of the CNS with hydrogen peroxide and Pyrap‐AKH reduces levels significantly. Moreover, a marked decrease in catalase activity compared with controls is recorded when the CNS is incubated with hydrogen peroxide. Incubation of the CNS with hydrogen peroxide and Pyrap‐AKH together curbs the negative effect on catalase activity. Taken together, the results of the present study provide strong support for the recently published data on the feedback regulation between oxidative stressors and AKH action, and implicate AKH in counteracting oxidative stress. The in vitro experiments should facilitate research on the mode of action of AKH in relation to oxidative stress, and could help clarify the key pathways involved in this process.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号