首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16865篇
  免费   1563篇
  国内免费   1722篇
生物科学   20150篇
  2024年   21篇
  2023年   183篇
  2022年   317篇
  2021年   738篇
  2020年   557篇
  2019年   749篇
  2018年   728篇
  2017年   533篇
  2016年   753篇
  2015年   1120篇
  2014年   1340篇
  2013年   1321篇
  2012年   1671篇
  2011年   1548篇
  2010年   974篇
  2009年   855篇
  2008年   1061篇
  2007年   985篇
  2006年   798篇
  2005年   730篇
  2004年   601篇
  2003年   547篇
  2002年   520篇
  2001年   259篇
  2000年   209篇
  1999年   216篇
  1998年   147篇
  1997年   102篇
  1996年   71篇
  1995年   65篇
  1994年   69篇
  1993年   40篇
  1992年   53篇
  1991年   44篇
  1990年   38篇
  1989年   30篇
  1988年   20篇
  1987年   16篇
  1986年   21篇
  1985年   13篇
  1984年   12篇
  1983年   11篇
  1982年   5篇
  1979年   4篇
  1976年   6篇
  1975年   7篇
  1974年   4篇
  1970年   5篇
  1965年   3篇
  1964年   3篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
2.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
3.
Drip loss, one of the most important meat quality traits, is characterized by low heritability. To date, the genetic factors affecting the drip loss trait have not been clearly elucidated. The objective of this study was to identify critical candidate genes affecting drip loss. First, we generated a Pietrain × Duroc × Landrace × Yorkshire commercial pig population and obtained phenotypic values for the drip loss trait. Furthermore, we constructed two RNA libraries from pooled samples of longissimus dorsi muscles with the highest (H group) and lowest (L group) drip loss and identified the differentially expressed genes (DEGs) between these extreme phenotypes using RNA‐seq technology. In total, 25 883 genes were detected in the H and L group libraries, and none was specifically expressed in only one library. Comparative analysis of gene expression levels found that 150 genes were differentially expressed, of which 127 were upregulated and 23 were downregulated in the H group relative to the L group. In addition, 68 drip loss quantitative trait loci (QTL) overlapping with 63 DEGs were identified, and these QTL were distributed mainly on chromosomes 1, 2, 5 and 6. Interestingly, the triadin (TRDN) gene, which is involved in muscle contraction and fat deposition, and the myostatin (MSTN) gene, which has a role in muscle growth, were localized to more than two drip loss QTL, suggesting that both are critical candidate genes responsible for drip loss.  相似文献   
4.
5.
Rice eating and cooking quality (ECQ) is a major concern of breeders and consumers, determining market competitiveness worldwide. Rice grain protein content (GPC) is negatively related to ECQ, making it possible to improve ECQ by manipulating GPC. However, GPC is genetically complex and sensitive to environmental conditions; therefore, little progress has been made in traditional breeding for ECQ. Here, we report that CRISPR/Cas9-mediated knockout of genes encoding the grain storage protein glutelin rapidly produced lines with downregulated GPC and improved ECQ. Our finding provides a new strategy for improving rice ECQ.  相似文献   
6.
7.
8.
9.
The tetrapeptide Boc-Trp-(N-Me)Nle-Asp-Phe-NH2 is a potent CCK-B agonist. Replacement in this analogue of the norleucine residue by a phenylalanine, to yield Boc-Trp-(N-Me)Phe-Asp-Phe-NH2, led to a 740-fold decrease in affinity whereas the same decrease in affinity was not observed in their nonmethylated counterparts. In order to ascertain the conformational preferences of these two N-methylated tetrapeptides, a study by two-dimensional (2D) nmr spectroscopy and molecular modeling was undertaken. The solution conformation of the two peptides was examined by 1H-nmr in a d6-DMSO/H2O (80 : 20) mixture. A cis-trans equilibrium, induced by N-methylation, was observed for both analogues, and the proton spectra of the two retamers were fully characterized in each case. 1H-1H distance constraints, derived from 2D nuclear Overhauser effect spectroscopy and rotating frame nuclear Overhauser effect spectroscopy experiments, were used as inputs for subsequent restrained molecular dynamics simulations. Comparisons of the nmr and molecular modeling data point toward distinct conformational preferences for these two peptides with an opposite spatial orientation of the Trp residue, and could explain the large difference in their biological activities. Furthermore, the tridimensional structure of Boc-Trp-(N-Me)Nle-Asp-Phe-NH2 could serve as a model for the design of nonpeptide CCK-B agonists. © 1994 John Wiley & Sons, Inc.  相似文献   
10.
Four Indica and five Japonica varieties of rice (Oryza sativa L.) were examined to elucidate their differences in photosynthetic activity and dark respiratory rate as influenced by leaf nitrogen levels and temperatures. The photosynthetic rates of single leaf showed correlations with total nitrogen and soluble protein contents in the leaves. Respiratory rate was also positively correlated with the leaf nitrogen content. When compared at the same level of leaf nitrogen or soluble protein content, the four Indica varieties and one of Japonica varieties, Tainung 67, which have some Indica genes derived from one of its parents, showed higher photosynthetic rates than the remaining four Japonica varieties. At the same photosynthetic rate, the Indica varieties showed lower respiratory rate than Japonica varieties. When the leaf temperature rose from 20°C to 30°C, the photosynthetic rate increased by 18 to 41%, whereas the respiratory rate increased by 100 to 150%. These increasing rates in response to temperature were higher in the Japonica than in the Indica varieties. In this respect, Tainung 67 showed the same behavior as of the other four Japonica varieties.Abbreviations 30/20 ratios the ratios of photosynthetic and respiratory rates at 30°C to those at 20°C  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号