首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
工业技术   1篇
  2016年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.

Drought forecasting is a major component of a drought preparedness and mitigation plan. This paper focuses on an investigation of artificial neural networks (ANN) models for drought forecasting in the algerois basin in Algeria in comparison with traditional stochastic models (ARIMA and SARIMA models). A wavelet pre-processing of input data (wavelet neural networks WANN) was used to improve the accuracy of ANN models for drought forecasting. The standard precipitation index (SPI), at three time scales (SPI-3, SPI-6 and SPI-12), was used as drought quantifying parameter for its multiple advantages. A number of different ANN and WANN models for all SPI have been tested. Moreover, the performance of WANN models was investigated using several mother wavelets including Haar wavelet (db1) and 16 daubechies wavelets (dbn, n varying between 2 and 17). The forecast results of all models were compared using three performance measures (NSE, RMSE and MAE). A comparison has been done between observed data and predictions, the results of this study indicate that the coupled wavelet neural network (WANN) models were the best models for drought forecasting for all SPI time series and over lead times varying between 1 and 6 months. The structure of the model was simplified in the WANN models, which makes them very convenient and parsimonious. The final forecasting models can be utilized for drought early warning.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号