首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   3篇
  国内免费   2篇
工业技术   61篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   11篇
  2012年   5篇
  2011年   6篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2007年   2篇
  2005年   3篇
  2004年   1篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
排序方式: 共有61条查询结果,搜索用时 125 毫秒
1.
Pattern Analysis and Applications - Writer identification based on handwriting recognition is considered one of the most common research areas in pattern recognition and biometrics. It has...  相似文献   
2.

Modern scientific research challenges require new technologies, integrated tools, reusable and complex experiments in distributed computing infrastructures. But above all, computing power for efficient data processing and analyzing. Containers technologies have emerged as a new paradigm to address such intensive scientific applications problems. Their easy deployment in a reasonable amount of time and the few required computational resource make them more suitable. Containers are considered light virtualization solutions. They enable performance isolation and flexible deployment of complex, parallel, and high-performance systems. Moreover, they gained popularity to modernize and migrate scientific applications in computing infrastructure management. Additionally, they reduce computational time processing. In this paper, we first give an overview of virtualization and containerization technologies. We discuss the taxonomies of containerization technologies of the literature, and then we provide a new one that covers and completes those proposed in the literature. We identify the most important application domains of containerization and their technological progress. Furthermore, we discuss the performance metrics used in most containerization techniques. Finally, we point out research gaps in the related aspects of containerization technology that require more research.

  相似文献   
3.
Spores of Bacillus sporothermodurans are known to be contaminant of dairy products and to be extremely heat-resistant. The induction of endospore germination before a heat treatment could be an efficient method to inactivate these bacteria and ensure milk stability. In this study, the nutrient-induced germination of B. sporothermodurans LTIS27 spores was studied. Testing the effect of 23 nutrient elements to trigger an important germination rate of B. sporothermodurans spores, only d-glucose, l-alanine, and inosine were considered as strong independent germinants. Both inosine and l-alanine play major roles as co-germinants with several other amino acids. A central composite experimental design with three factors (l-alanine, d-glucose, and temperature) using response surface methodology was used to optimize the nutrient-induced germination. The optimal rate of nutrient-induced germination (100%) of B. sporothermodurans spores was obtained after incubation of spore for 60 min at 35 °C in presence of 9 and 60 mM of d-glucose and l-alanine, respectively. The results in this study can help to predict the effect of environmental factors and nutrients on spore germination, which will be beneficial for screening of B. sporothermodurans in milk after induction their germination. Moreover, the chosen method of optimization of the nutrient-induced germination was efficient in finding the optimum values of three factors.  相似文献   
4.
Iterative Dynamic Programming (IDP) is proven to be a useful technique for solving constrained dynamic optimisation problems. A high purity binary distillation column model has been chosen to investigate some of the IDP properties as well as its applicability. The investigated problems cover transitions from one steady state to another with the minimization of a quadratic cost function with associated terminal constraints.  相似文献   
5.
Epoxy/ powder metal composites have interesting electrical properties, becoming conductors above the percolation threshold. To complete this study, mechanical investigations have been carried out to show the influence of the fillers on the mechanical performance of these composites. In this framework, different epoxy/metallic powders (Cobalt, Chromium) composites were prepared. Scanning Electron Microscopy showed that the dispersion of the metallic fillers in the matrix is almost homogeneous. The dynamic mechanical thermal analysis (DMTA) measurements showed the dependence of the viscoelastic parameters with the frequency, temperature, nature, and content of fillers. The main relaxations observed are the primary α relaxation (associated to the glass transition, Tg) and a secondary β relaxation. A second DMTA run on the same samples showed a slight increase of the Tg. It clearly showed that the used metallic fillers improve the mechanical properties of the obtained composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
6.
Thermoplastics start to manifest a nonlinear mechanical behavior from relatively low loading levels. Under a bending solicitation, which generates a nonuniform stress field, the material behavior becomes more challenging. Indeed, a flexed specimen may have different behaviors from one point to another according to the local stress state. In the present work, a six-parameter rheological model is used to simulate the nonlinear behavior of an elastoviscoplastic beam, subjected to a three-point bending load. In the framework of Euler–Bernoulli theory, the mathematical formulation of a bent beam behavior involves the bending curvature function. This function allows the determination of the strain and stress fields along and through the beam. However, when the beam reaches the viscoplastic stage, the differential equation providing the bending curvature of the beam requires a numerical integration, which has been accomplished in this work. This theoretical modeling approach is supported by experimental creep tests carried out on polyamide specimens (PA6). The testing results are qualitatively consistent with the predictions of the proposed rheological model.  相似文献   
7.
We have addressed the question as to whether calcium may modify the [3H]estradiol ([3H]E2) binding properties of the estrogen receptor (ER). A human recombinant full length ER (yER) expressed in yeast was used to limit the potential interference of ER-associated proteins and proteases present in the target tissues. Ca++ (0.1-10 mM) always produced an important loss of [3H]E2 binding capacity without any effect on the hormone binding affinity of residual receptors. This loss was reflected in a decrease of immunoreactivity for monoclonal antibodies raised against the hormone binding domain. An ER recombinant expressing solely this domain confirmed that the ion operated at this level. Binding of [125I]Z-17 alpha-(2-iodovinyl)-11 beta-chloromethyl estradiol-17 beta (an compound with very high selectivity for ER) as well as [125I]tamoxifen aziridine were similarly affected. Size-exclusion chromatography failed to reveal the emergence of any ER isoforms of low molecular weight rejecting the hypothesis of a Ca(++)-induced proteolysis. In agreement with this conclusion, EDTA reversed the loss of [3H]E2 binding capacity. Phosphoamino acids (PY, PT and PS) partly antagonized the effect of Ca++ suggesting its interaction with phosphoamino acid residues. Worthy of note, the effect of Ca++ appeared more marked when assessed by DCC than HAP assay. The phosphocalcic nature of the HAP matrix may explain this phenomenon which was observed with cytosolic ER from various origins.  相似文献   
8.
CLEC12A is a myeloid inhibitory receptor that negatively regulates inflammation in mouse models of autoimmune and autoinflammatory arthritis. Reduced CLEC12A expression enhances myeloid cell activation and inflammation in CLEC12A knock-out mice with collagen antibody-induced or gout-like arthritis. Similarly to other C-type lectin receptors, CLEC12A harbours a stalk domain between its ligand binding and transmembrane domains. While it is presumed that the cysteines in the stalk domain have multimerisation properties, their role in CLEC12A expression and/or signaling remain unknown. We thus used site-directed mutagenesis to determine whether the stalk domain cysteines play a role in CLEC12A expression, internalisation, oligomerisation, and/or signaling. Mutation of C118 blocks CLEC12A transport through the secretory pathway diminishing its cell-surface expression. In contrast, mutating C130 does not affect CLEC12A cell-surface expression but increases its oligomerisation, inducing ligand-independent phosphorylation of the receptor. Moreover, we provide evidence that CLEC12A dimerisation is regulated in a redox-dependent manner. We also show that antibody-induced CLEC12A cross-linking induces flotillin oligomerisation in insoluble membrane domains in which CLEC12A signals. Taken together, these data indicate that the stalk cysteines in CLEC12A differentially modulate this inhibitory receptor’s expression, oligomerisation and signaling, suggestive of the regulation of CLEC12A in a redox-dependent manner during inflammation.  相似文献   
9.
The aim of this study was to show the feasibility and the performances of nanoparticle biosensing. A glucose conductometric biosensor was developed using two types of nanoparticles (gold and magnetic), glucose oxidase (GOD) being adsorbed on PAH (poly(allylamine hydrochloride)) modified nanoparticles, deposited on a planar interdigitated electrode (IDEs). The best sensitivities for glucose detection were obtained with magnetic nanoparticles (70 μM/mM and 3 μM of detection limit) compared to 45 μM/mM and 9 μM with gold nanoparticles and 30 μM/mM and 50 μM with GOD directly cross-linked on IDEs. When stored in phosphate buffer (20 mM, pH 7.3) at 4 °C, the biosensor showed good stability for more than 12 days.  相似文献   
10.
The development of enzymatic sensors for biological purposes such as biomedicine, pharmacy, food industry, and environmental toxicity requires the purification step of the enzyme. To prevent the loss of the enzyme activity, a new strategy is held in order to immobilize the bacteria. It will constitute the biological sensing element leading to a high operational stability and multiple adaptations to various conditions such as temperature, pH and ionic strength changes. In this work we describe the development of a urea biosensor by immobilizing Proteus mirabilis bacteria onto an insulator–semiconductor electrode on functionalized Fe3O4 nanoparticles (NPs), using cationic, Poly (allylamine hydrochloride) then anionic, Poly (sodium 4-styrenesulfonate) polyelectrolytes, BSA (serum bovin albumin), and glutaraldehyde as a cross-linking agent. The response of P. mirabilis to urea addition is evaluated in homogeneous and heterogeneous phases. Before the immobilization step, the activity of urease produced from the P. mirabilis bacteria was attempted using the ion ammonium selective electrodes (ISEs). Adhesion of the bacteria cells on IS electrodes have been studied using contact angle measurements.After immobilization of the bacteria, on the (Si/SiO2/Si3N4) and (Si/SiO2) substrates, the relationship between the evolution of the flat band potential ?VFB and the urea concentration is found to be linear for values ranging from 10? 2 M to 10? 5 M.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号