首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
工业技术   4篇
  2018年   2篇
  2017年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
通过蠕变性能测试,组织结构观察和晶格常数测定,研究应力时效对DZ125镍基合金组织演化与蠕变抗力的影响。结果表明:合金在980℃、90MPa近服役条件下的蠕变寿命是9714h;蠕变期间,样品中间区域的γ′相优先形成完整的筏状组织,在无应力的肩部区域,γ′相呈现串状形态;随应力时效时间延长至9714h,合金中筏状γ′相的厚度尺寸从0.4μm增加至1.8μm,合金中γ′、γ两相的晶格常数值增加,两相的错配度增大。其中,应力时效致使筏状γ′相粗化及错配度增大,可改善蠕变抗力,是合金在近服役条件具有较长蠕变寿命的原因之一。  相似文献   
2.
通过蠕变性能测试和组织形貌观察,研究了一种Re含量为4.5%Re(质量分数,下同)的镍基单晶合金的高温蠕变行为、变形和损伤机制。结果表明,4.5%Re合金在980℃/300MPa的蠕变寿命为169h。蠕变初期,合金中立方γ′相转变为垂直于应力轴的N型筏状结构。稳态蠕变期间,合金的变形机制为位错在基体中滑移和攀移越过筏状γ′相。蠕变后期,合金的变形机制为位错在基体中滑移和剪切进入筏状γ′相。由于γ基体通道较窄,位错在基体通道中滑移所需的阻力较大。剪切进入γ′相的110超位错可由{111}面交滑移至{100}面,形成K-W锁,从而抑制位错的滑移和交滑移,这是合金具有较好蠕变抗力的主要原因。主/次滑移位错的交替开动,可致使筏状γ′相扭曲,并促使裂纹在筏状γ/γ′两相界面萌生;裂纹沿垂直于应力轴方向扩展,直至断裂,这是合金的蠕变断裂机制。  相似文献   
3.
通过对含4.5%Re/3.0%Ru单晶镍基合金进行高温蠕变性能测试,并采用扫描电镜(SEM)、透射电镜(TEM)对不同蠕变期间的试样进行组织形貌观察,研究了该合金的高温蠕变行为。结果表明,本实验所选用的单晶合金在高温蠕变期间具有良好的蠕变抗力,在1040℃/160MPa的蠕变寿命达到725h。高温蠕变初期,合金中γ′相沿垂直于应力轴方向转变成筏状结构,其稳态蠕变期间的变形机制是位错在基体中滑移和攀移越过筏状γ′相。高温蠕变后期,合金的变形机制是位错在基体中滑移和剪切筏状γ′相。位错的交替滑移使筏形γ′相扭曲,并在γ/γ′两相界面发生裂纹的萌生与扩展直至断裂,是合金在高温蠕变后期的断裂机制。  相似文献   
4.
通过对合金进行不同温度层错能的计算、蠕变性能测试及位错组态的衍衬分析,研究温度对单晶镍基合金层错能和蠕变机制的影响。结果表明:合金在760℃具有较低的层错能,其蠕变期间的变形机制是〈110〉超位错剪切进入γ′相,其中,切入γ′相的位错可分解形成(1/3)〈112〉位错+(SISF)层错的位错组态。随温度的提高,合金的层错能增大,合金在1070℃蠕变期间的变形机制是〈110〉螺、刃超位错剪切进入γ′相。在980℃,合金的层错能介于760~1070℃之间,蠕变期间的主要变形机制是〈110〉螺、刃超位错剪切进入γ′相,其中,剪切进入γ′相的螺位错由{111}面交滑移至{100}面,形成(1/2)〈110〉不全位错+反向畴界(APB)的K-W锁位错组态,这种具有面角非平面芯结构的K-W锁可抑制位错的交滑移,提高合金的蠕变抗力。其中,蠕变期间较低的应变速率仅释放较少的形变热,不足以激活K-W锁中的位错在{111}面滑移,是K-W锁在980℃得以保留的主要原因。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号