首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   3篇
  国内免费   1篇
生物科学   49篇
  2017年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有49条查询结果,搜索用时 46 毫秒
1.
The genes for cellobiose utilization are normally cryptic in Escherichia coli. The cellobiose system was used as a model to understand the process by which silent genes are maintained in microbial populations. Previously reported was (1) the isolation of a mutant strain that expresses the cellobiose-utilization (Cel) genes and (2) that expression of those genes allows utilization of three beta- glucoside sugars: cellobiose, arbutin, and salicin. The Cel gene cluster has now been cloned from that mutant strain. In the course of locating the Cel genes within the cloned DNA segment, it was discovered that inactivation of the Cel-encoded hydrolase rendered the host strain sensitive to all three beta-glucosides as potent inhibitors. This sensitivity arises from the accumulation of the phosphorylated beta- glucosides. Because even the fully active genes conferred some degree of beta-glucoside sensitivity, the effects of cellobiose on a series of five Cel+ mutants of independent origin were investigated. Although each of those strains utilizes cellobiose as a sole carbon and energy source, cellobiose also acts as a potent inhibitor that reduces the growth rate on glycerol 2.5-16.5-fold. On the other hand, wild-type strains that cannot utilize cellobiose are not inhibited. The observation that the same compound can serve either as a nutrient or as an inhibitor suggests that, under most conditions in which cellobiose will be present together with other resources, there is a strong selective advantage to having the cryptic (Cel0) allele. In those environments in which cellobiose is the sole, or the best, resource, mutants that express the genes (Cel+) will have a strong selective advantage. It is suggested that temporal alternation between these two conditions is a major factor in the maintenance of these genes in E. coli populations. This alternation of environments and fitnesses was predicted by the model for cryptic-gene maintenance that was previously published.   相似文献   
2.
Selection-induced mutations are nonrandom mutations that occur as specific and direct responses to environmental challenge. Examples of selection-induced mutations have been reported both in bacteria and in yeast. I previously showed (Hall 1988) that excisions of the mobile genetic element IS150 from within bglF are selection induced and argued that they occurred because they were potentially advantageous under the selective conditions employed. Mittler and Lenski (Mittler and Lenski 1992) have argued that such excisions are not selection induced but that they occur randomly in nondividing cells. Here I provide further evidence that IS150 excisions are induced by selection and that the excisions are immediately, rather than only potentially, advantageous to the cell. I also provide evidence that excisions, which Mittler and Lenski claim occur randomly in saturated broth cultures, actually occur after samples from those cultures are plated onto selective medium.   相似文献   
3.
The in vitro plant regeneration frequencies for immature scutella, leaf-bases/apical meristems (LB/AM) and mature embryos of four commercially important barley genotypes were compared. Production of shoots from mature embryos or calluses of LB/AM incubated on media containing 1.0 or 2.0 mg l–1 6-benzylaminopurine (BA) were comparable to regeneration frequencies obtained for scutella-derived calluses of the same genotypes. Incubation of excised mature embryos and LB/AM on media containing the plant growth regulator, thidiazuron (TDZ), resulted in an increased shoot production. However, TDZ treatment did not stimulate plant regeneration from calluses derived from scutella or LB/AM. Shoots formed from TDZ-treated mature embryos and LB/AM were induced without a callus interphase and the in vitro culture system gave a three- to eight-fold higher regeneration frequency than recorded for scutella-derived calluses on BA medium. The simplicity and rapid development of shoots using the mature embryo system could potentially be used for the regeneration and genetic transformation of barley over alternative regeneration systems.  相似文献   
4.
The Endo F2gene was overexpressed in E.coli as a fusion protein joined to the maltose-binding protein. MBP-Endo F2was found in a highly enriched state as insoluble, inactive inclusion bodies. Extraction of the inclusion bodies with 20% acetic acid followed by exhaustive dialysis rendered the fusion protein active and soluble. MBP-Endo F2was digested with Factor Xaand purified on Q-Sepharose. The enzyme was homogeneous by SDS-PAGE, and appeared as a single symmetrical peak on HPLC. Analysis of the amino-terminus demonstrated conclusively that recombinant Endo F2was homogeneous and identical to the native enzyme.   相似文献   
5.
Phytate is the primary form of phosphorus found in mature cereal grain. This form of phosphorus is not available to monogastric animals due to a lack of the enzyme phytase in their digestive tract. Several barley low phytic acid (lpa) mutants have been identified that contain substantial decreases in seed phytate accompanied by concomitant increases in inorganic phosphorus. Seed homozygous for low phytic acid 1-1 (lpa1-1) or low phytic acid 2-1 (lpa2-1) has a 50% and 70% decrease in seed phytate respectively. These mutations were previously mapped to chromosomes 2HL and 7HL respectively. The RFLP marker ABC153 located in the same region of 2H was converted to a sequence-characterized-amplified-region (SCAR) marker. Segregation analysis of the CDC McGwire × Lp422 doubled haploid population confirmed linkage between the SCAR marker and the lpa1-1 locus with 15% recombination. A third low phytic acid mutant, M635, has a 75% decrease in phytate. This mutation was located to chromosome 1HL by linkage with an inter-simple sequence repeat (ISSR) based marker (LP75) identified through bulked-segregant analysis, and has been designated lpa3-1. Based on analysis of recombination between marker LP75 and low phytic acid in an additional mutant line M955 (95% phytate decrease), lpa3-1 and the mutation in M955 are in the same region on chromosome 1HL, and may be allelic.  相似文献   
6.
The in vitro competency of mature cereal embryos (winter, spring and durum wheats, oat, barley and triticale) was assessed for direct multiple shoot production on culture media containing the plant growth regulators, thidiazuron (TDZ) and/or 6–benzylaminopurine (BAP). Mature embryos of CDC Dancer oat showed the best response, with 69 shoots per explant on culture medium containing a combination of 4.5 μM TDZ and 4.4 μM BAP. TDZ alone induced about 16 shoots per explant from the oat. Among the wheat genotypes, durum wheat showed the most number of shoots (35) per explant on culture medium containing 4.5 μM of TDZ and 4.4 μM of BAP. With TDZ alone, shoot regeneration for durum wheat ranged from 27–32 shoots per explant. The regeneration frequency from the three winter wheat genotypes ranged from 11–25 shoots per explant and was highest on culture medium containing 9.1 μM TDZ and 4.4 μM BAP. The latter culture medium was also effective for a triticale genotype, inducing 34 shoots per explant. The regeneration from mature embryos of barley genotypes ranged from 5–9 shoots per explant. The mature embryos of all the cereals tested could be used for in vitro regeneration with TDZ and TDZ+BAP combinations.  相似文献   
7.
A better understanding of the genetics of complex traits, such as yield, may be achieved by using molecular tools. This study was conducted to estimate the number, genome location, effect and allele phase of QTLs determining agronomic traits in the two North American malting barley (Hordeum vulgare L.) quality variety standards. Using a doubled haploid population of 140 lines from the cross of two-rowed Harrington×six-rowed Morex, agronomic phenotypic data sets from nine environments, and a 107-marker linkage map, we performed QTL analyses using simple interval mapping and simplified composite interval mapping procedures. Thirty-five QTLs were associated, either across environments or in individual environments, with five grain and agronomic traits (yield, kernel plumpness, test weight, heading date, and plant height). Significant QTL×environment interaction was detected for all traits. These interactions resulted from both changes in the magnitude of response and changes in the sign of the allelic effect. QTLs for multiple traits were coincident. The vrs1 locus on chromosome 2 (2H), which determines inflorescence row type, was coincident with the largest-effect QTL determining four traits (yield, kernel plumpness, test weight, and plant height). QTL analyses were also conducted separately for each sub-population (six-rowed and two-rowed). Seven new QTLs were detected in the sub-populations. Positive transgressive segregants were found for all traits, but they were more prevalent in the six-rowed sub-population.QTL analysis should be useful for identifying candidate genes and introgressing favorable alleles between germplasm groups. Received: 18 August 2000 / Accepted: 15 December 2000  相似文献   
8.
Individual plants of several Amelanchier taxa contain many polymorphic nucleotide sites in the internal transcribed spacers (ITS) of nuclear ribosomal DNA (nrDNA). This polymorphism is unusual because it is not recent in origin and thus has resisted homogenization by concerted evolution. Amelanchier ITS sequence polymorphism is hypothesized to be the result of gene flow between two major North American clades resolved by phylogenetic analysis of ITS sequences. Western North American species plus A. humilis and A. sanguinea of eastern North America form one clade (A), and the remaining eastern North American Amelanchier make up clade B. Five eastern North American taxa are polymorphic at many of the nucleotide sites where clades A and B have diverged and are thought to be of hybrid origin, with A. humilis or A. sanguinea as one parent and various members of clade B as the other parent. Morphological evidence suggests that A. humilis is one of the parents of one of the polymorphic taxa, a microspecies that we refer to informally as A. "erecta." Sequences of 21 cloned copies of the ITS1- 5.8S gene-ITS2 region from one A. "erecta" individual are identical to A. humilis sequence or to the clade B consensus sequence, or they are apparent recombinants of A. humilis and clade B ITS repeats. Amelanchier "erecta" and another polymorphic taxon are suspected to be relatively old because both grow several hundred kilometers beyond the range of one of their parents. ITS sequence polymorphisms have apparently persisted in these two taxa perhaps because of polyploidy and/or agamospermy (asexual seed production), which are prevalent in the genus.   相似文献   
9.
Histone deacetylases have central functions in regulating stress defenses and development in plants. However, the knowledge about the deacetylase functions is largely limited to histones, although these enzymes were found in diverse subcellular compartments. In this study, we determined the proteome‐wide signatures of the RPD3/HDA1 class of histone deacetylases in Arabidopsis. Relative quantification of the changes in the lysine acetylation levels was determined on a proteome‐wide scale after treatment of Arabidopsis leaves with deacetylase inhibitors apicidin and trichostatin A. We identified 91 new acetylated candidate proteins other than histones, which are potential substrates of the RPD3/HDA1‐like histone deacetylases in Arabidopsis, of which at least 30 of these proteins function in nucleic acid binding. Furthermore, our analysis revealed that histone deacetylase 14 (HDA14) is the first organellar‐localized RPD3/HDA1 class protein found to reside in the chloroplasts and that the majority of its protein targets have functions in photosynthesis. Finally, the analysis of HDA14 loss‐of‐function mutants revealed that the activation state of RuBisCO is controlled by lysine acetylation of RuBisCO activase under low‐light conditions.  相似文献   
10.

Background  

Starch accumulation and degradation in chloroplasts is accomplished by a suite of over 30 enzymes. Recent work has emphasized the importance of multi-protein complexes amongst the metabolic enzymes, and the action of associated non-enzymatic regulatory proteins. Arabidopsis At5g39790 encodes a protein of unknown function whose sequence was previously demonstrated to contain a putative carbohydrate-binding domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号