首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   12篇
  国内免费   2篇
生物科学   305篇
  2024年   1篇
  2023年   4篇
  2022年   1篇
  2021年   20篇
  2020年   13篇
  2019年   12篇
  2018年   20篇
  2017年   11篇
  2016年   9篇
  2015年   6篇
  2014年   21篇
  2013年   25篇
  2012年   24篇
  2011年   21篇
  2010年   6篇
  2009年   11篇
  2008年   9篇
  2007年   14篇
  2006年   9篇
  2005年   14篇
  2004年   14篇
  2003年   3篇
  2002年   7篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1983年   1篇
  1980年   2篇
  1979年   1篇
  1978年   4篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1973年   3篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1962年   1篇
排序方式: 共有305条查询结果,搜索用时 187 毫秒
1.
2.
Biochemical effects of sub lethal doses LC10 and LC20 of cypermethrin were studied on some enzymes and macromolecule activities of adult beetles of Tribolium castaneum (Herbst.). Cypermethrin caused disturbances in levels of all biochemical components under study. The dose of 0.78 ppm caused abnormalities in α‐amylase and FAA by increasing their activities i.e., 45.45% and 21.97% significantly. The higher sub lethal dose of 2.62 ppm disturbed all the parameters (AcP, α‐amylase, soluble protein and FAA) except AkP, which was decreased by 93.06%. Moreover, sub lethal doses either increased or decreased the levels of all parameters non‐significantly except AkP and FAA which were effected significantly by 87.92% and 14.29% at lower and higher doses, respectively. In the present studies, cypermethrin significantly enhanced the activity of AkP in both susceptible and resistant strains of T. castaneum adult beetles while FAA contents were increased significantly in resistant strain only. The activity of α‐amylase was significantly lowered in susceptible strain only.  相似文献   
3.
Abstract

The present study was conducted to assess the magnitude and health impacts of As in drinking water. Drinking water samples (n?=?60) were collected from twenty different sites of Shiekhupura District (Pakistan). Health risk assessment through average daily dose (ADD), hazard indices (HI), hazard quotient (HQ), carcinogenic risk (CR), and cancer indices (CI) for dermal and oral exposure were determined. Results revealed that As concentration ranged from 2 to 900?µg?L?1 in water samples, which was significantly greater than the safe limit of As (10?µg?L?1) in water. Health risk assessment of As showed that ADD (1.07E?02–9.85E?04), HQ (1.06E+01–9.85E+00), and CR (1.60E?02–9.85E?04) for oral exposure and ADD (1.03E?05–9.69E?06), HQ (1.19E?02–7.96E?03), and CR (1.11E?05–8.98E?05) for dermal exposure which were exceeded the toxic risk index value. Comparison of the two exposure pathways indicated that the oral exposure is much higher risk than the dermal contact. Both values of HI and CI were greater than WHO limit. It is concluded that residents of study area are at higher risk of As induced diseases and carcinogenicity.  相似文献   
4.
The 2-picolylamine is a simplest analogue of the alkaloid that has secondary and tertiary nitrogen function in its cyclic structure like that of alkaloids that can be derivatized to a number of biologically active compounds. In connection to our previous work, in the present work, three thiourea derivatives (I = 1,3-bis(2-benzyl-3-phenyl-1-(pyridine-2-yl) propyl) thiourea, II = 1,3-bis (pyridin-2-ylmethyl) thiourea, and III = 1-(2-benzyl-3-phenyl-1-(pyridine-2-yl) propyl)-3-phenylthiourea) were synthesized using 2-picolylamine template which is a readily available synthetic analogue of naturally occurring alkaloid. The biological effect of the synthesized derivatives were monitored on the activity of glucose-6-phosphatase in Swiss albino mice (21-days). The derivatives were also tested for their potential toxicity in a 28-days sub-chronic toxicity studies by assessing their effects on different parameters like hematological, serum biochemistry and liver histology. The therapeutic effect of the safe derivative (I) was examined in streptozotocin-induced diabetic mice as well. The derivatives showed inhibition of the enzyme activity from good to an excellent degree. Compound I had the highest inhibition with 21.42 ± 5.113 mg of the released phosphate as compared to that of the positive control group (84.55 ± 3.213 mg). Only I turned out to be safe for use in animals without exerting any toxic or lethal effects on any of the assessed parameters in the used animal model. Compound I efficiently reversed the effects like hyperglycemia, hyperlipidemia and weight loss in the test animals. Out of these three-tested compounds, I was found safe to be use as therapeutic agent in diabetes complications. However, further toxicological studies in other animal models are needed as well.  相似文献   
5.
Plant and Soil - Success in agronomic biofortification of maize and wheat is highly variable. This study aimed to elucidate the differences in uptake and translocation of foliar-applied zinc (Zn)...  相似文献   
6.
Root-knot nematodes Meloidogyne incognita (Kofoid and White) Chitwood and Rhizoctonia bataticola (Taub.) Butler, fungus, are very dangerous root damaging pathogens. Present study was planned to establish a chemical control of these root deteriorating pathogens under lab conditions as well as in field. Maximum death rate of nematode juveniles and minimum numbers of nematode eggs hatched were recorded in plates treated with Cadusafos (Rugby® 100G) @12 g/100 ml and Cartap® (4% G) @9g/100 ml. Chemical treatment of Rhizoctonia bataticola with Trifloxystrobin + Tebuconazole (Nativo®) @0.2 g/100 ml and Mancozeb + Matalaxyl (Axiom) @0.25 g/100 ml significantly controlled the mycelial growth in plates. The best treatments tested in laboratory were applied in field as protective and curative treatments. Results proved that chemical control of root-knot nematode and root rot fungi by tested chemicals at recommended time and dose is a significant management technique under field conditions.  相似文献   
7.
Honey bee is vital for pollination and ecological services, boosting crops productivity in terms of quality and quantity and production of colony products: wax, royal jelly, bee venom, honey, pollen and propolis. Honey bees are most important plant pollinators and almost one third of diet depends on bee’s pollination, worth billions of dollars. Hence the role that honey bees have in environment and their economic importance in food production, their health is of dominant significance. Honey bees can be infected by various pathogens like: viruses, bacteria, fungi, or infested by parasitic mites. At least more than 20 viruses have been identified to infect honey bees worldwide, generally from Dicistroviridae as well as Iflaviridae families, like ABPV (Acute Bee Paralysis Virus), BQCV (Black Queen Cell Virus), KBV (Kashmir Bee Virus), SBV (Sacbrood Virus), CBPV (Chronic bee paralysis virus), SBPV (Slow Bee Paralysis Virus) along with IAPV (Israeli acute paralysis virus), and DWV (Deformed Wing Virus) are prominent and cause infections harmful for honey bee colonies health. This issue about honey bee viruses demonstrates remarkably how diverse this field is, and considerable work has to be done to get a comprehensive interpretation of the bee virology.  相似文献   
8.
In this study, the phytochemical, phenolic, flavonoid and bioactive compounds were successfully screened from crude extract of Sargassum wightii by LC-MS analysis after NIST interpretation. Bacterial growth inhibition study result was shown with 24 mm zone inhibition at 200 µg/mL concentration against P. aeruginosa. The increased phenolic content was much closed to gallic acid and the range was observed at 250 μg/mL concentration. In addition, flavonoid contents of the algae extract was indicated more significant with rutin at 200 μg/mL. In result, both the phenolic and flavonoid contents of the extract were more correlated with gallic acid and rutin. Further, the total anti-oxidant and DPPH radical scavenging activities were shown increased activity at 200 μg/mL concentrations. Furthermore, the excellent anti-bacterial alteration result was observed at 200 μg/mL concentration by minimum inhibition concentration. Therefore, the result was revealed that the marine algae Sargassum wightii has excellent phytochemical and anti-oxidant activities, and it has improved anti-bacterial activity against P. aeruginosa.  相似文献   
9.
Barley (Hordeum vulgare L.) is a major cereal grain and is known as a halophyte (a halophyte is a salt-tolerant plant that grows in soil or waters of high salinity). We therefore conducted a pot experiment to explore plant growth and biomass, photosynthetic pigments, gas exchange attributes, stomatal properties, oxidative stress and antioxidant response and their associated gene expression and absorption of ions in H. Vulgare. The soil used for this analysis was artificially spiked at different salinity concentrations (0, 50, 100 and 150 mM) and different levels of ascorbic acid (AsA) were supplied to plants (0, 30 and 60 mM) shortly after germination of the seed. The results of the present study showed that plant growth and biomass, photosynthetic pigments, gas exchange parameters, stomatal properties and ion uptake were significantly (p < 0.05) reduced by salinity stress, whereas oxidative stress was induced in plants by generating the concentration of reactive oxygen species (ROS) in plant cells/tissues compared to plants grown in the control treatment. Initially, the activity of antioxidant enzymes and relative gene expression increased to a saline level of 100 mM, and then decreased significantly (P < 0.05) by increasing the saline level (150 mM) in the soil compared to plants grown at 0 mM of salinity. We also elucidated that negative impact of salt stress in H. vulgare plants can overcome by the exogenous application of AsA, which not only increased morpho-physiological traits but decreased oxidative stress in the plants by increasing activities of enzymatic antioxidants. We have also explained the negative effect of salt stress on H. vulgare can decrease by exogenous application of AsA, which not only improved morpho-physiological characteristics, ions accumulation in the roots and shoots of the plants, but decreased oxidative stress in plants by increasing antioxidant compounds (enzymatic and non-enzymatic). Taken together, recognizing AsA's role in nutrient uptake introduces new possibilities for agricultural use of this compound and provides a valuable basis for improving plant tolerance and adaptability to potential salinity stress adjustment.  相似文献   
10.
Infection associated with implanted biomaterials is common and costly and such infections are extremely resistant to antibiotics and host defenses. Consequently, there is a need to develop surfaces which resist bacterial adhesion and colonization. The broad spectrum synthetic cationic peptide melimine has been covalently linked to a surface via two azide linkers, 4-azidobenzoic acid (ABA) or 4-fluoro-3-nitrophenyl azide (FNA), and the resulting surfaces characterized by X-ray photoelectron spectroscopy and contact angle measurements. The quantity of bound peptide was estimated by a modified Bradford assay. The antimicrobial efficacy of the two melimine-modified surfaces against Pseudomonas aeruginosa and Staphylococcus aureus was compared by scanning electron microscopy (SEM) and fluorescence microscopy. Attachment of melimine via ABA gave an approximately 4-fold greater quantity of melimine bound to the surface than attachment via FNA. Surfaces melimine-modified by either attachment strategy showed significantly reduced bacterial adhesion for both strains of bacteria. P. aeruginosa exposed to ABA–melimine and FNA–melimine surfaces showed marked changes in cell morphology when observed by SEM and a reduction of approximately 15-fold (p < 0.001) in the numbers of adherent bacteria compared to controls. For the ABA–melimine surface there was a 33% increase in cells showing damaged membranes (p = 0.0016) while for FNA–melimine there was no significant difference. For S. aureus there were reductions in bacterial adhesion of approximately 40-fold (p < 0.0001) and 5-fold (p = 0.008) for surfaces modified with melimine via ABA or FNA, respectively. There was an increase in cells showing damaged membranes on ABA–melimine surfaces of approximately 87% (p = 0.001) compared to controls, while for FNA–melimine there was no significant difference observed. The data presented in this study show that melimine has excellent potential for development as a broad spectrum antimicrobial coating for biomaterial surfaces. Further, it was observed that the efficacy of antimicrobial activity is related to the method of attachment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号