首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   11篇
生物科学   163篇
  2021年   1篇
  2017年   1篇
  2015年   2篇
  2014年   10篇
  2013年   3篇
  2012年   7篇
  2011年   6篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   5篇
  2006年   5篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   6篇
  2001年   8篇
  2000年   9篇
  1999年   7篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   13篇
  1988年   4篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1978年   4篇
  1977年   7篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有163条查询结果,搜索用时 265 毫秒
1.
2.
Poly(A)+-selected RNA prepared from cells or tissues that express a homogeneous population of either beta 1- or beta 2-adrenergic receptors was isolated and then microinjected into Xenopus laevis oocytes. Following microinjection, the expression of beta-adrenergic receptors was assessed by equilibrium radioligand binding analysis using the antagonist ligand [3H]dihydroalprenolol. The pharmacology of the newly- expressed beta-adrenergic receptors in oocyte membranes was the same as that of the original tissue used as a source of RNA. Hybridization of nick-translated cDNA of hamster beta 2-adrenergic receptor to poly(A)+-selected RNA from tissues containing beta 2-adrenergic receptors was to a mRNA species of 2.2 kilobases. In contrast, hybridization of the cDNA probe to poly(A)+-selected RNA from tissues containing beta 1-adrenergic receptors was to a mRNA species of 2.0 kilobases. A single-stranded fragment of hamster beta 2-adrenergic receptor cDNA corresponding to nucleotides 730-886 was isolated and uniformly radiolabeled. This region of the gene is predicted to encode for the entire second exofacial loop (L4-5), the entire fifth transmembrane-spanning region, and the first 5 amino acid residues of the third cytoplasmic loop (L5-6) of the beta 2-adrenergic receptor. Hybridization at 48 and 56 degrees C of poly(A)+-selected RNA prepared from sources that express either beta 1 or beta 2-adrenergic receptors to the antisense orientation strand of this region of the beta 2-adrenergic receptor cDNA was followed by S1 endonuclease digestion of nonhybridized sequences. At 48 degrees C, S1-resistant hybrids from both sources of RNA protected the probe from S1 endonuclease digestion. At 56 degrees C, however, only the RNA prepared from the source of beta 2-adrenergic receptors protected the probe from S1 endonuclease digestion. These results demonstrate that the mRNAs encoding for the structurally homologous beta 1- and beta 2-adrenergic receptors are distinct in the pharmacological specificity of their translation products and in their size and structure.  相似文献   
3.
Fat cells from the hypothyroid rat fail to synthesize cyclic AMP in response to beta-adrenergic agonists, although possessing normal amounts of beta-adrenergic receptors (R) and catalytic adenylate cyclase activity. Membranes of hypothyroid rat fat cells contain Mr = 42,000 (major form), 46,0000, and 48,000 (minor forms) peptides of the stimulatory guanine nucleotide-binding regulatory component (Ns) radiolabeled in the presence of cholera toxin and [32P]NAD+. Maps of fragments generated by partial proteolysis of these radiolabeled peptides are virtually identical in hypothyroid and euthyroid preparations. Two-dimensional gel electrophoresis showed that the size and charge of the Mr = 42,000, 46,000, and 48,000 radiolabeled peptides are similar in euthyroid and hypothyroid rat fat cell membranes. Extracts of hypothyroid rat fat cell membranes express normal amounts of Ns activity as measured by their ability to reconstitute the adenylate cyclase of membranes of S49 mouse lymphoma cyc- mutant cells which lack functional Ns activity. Hybridization of hypothyroid rat fat cells with donor membranes of normal rat fat cells, rat hepatocytes, or S49 cyc- cells restores the beta-adrenergic response of these fat cells. Pretreating the donor membranes with a beta-adrenergic antagonist covalent label blocks the ability of these membranes to restore the response of the cells. Rat hepatocytes pretreated with a beta-adrenergic antagonist covalent label do not accumulate cyclic AMP in response to isoproterenol. Hybridization of these receptor-deficient hepatocytes with fat cell ghosts of euthyroid rats restores beta-adrenergic stimulation of cyclic AMP accumulation, whereas hybridization with fat cell ghosts of hypothyroid rat does not restore this response. Ns of pigeon erythrocyte membranes radiolabeled with cholera toxin and [32P]NAD+, extracted in cholate, and reconstituted with fat cell membranes interacts with fat cell R. The ability of R to interact with Ns of pigeon erythrocyte membranes is impaired when the reconstitution is performed with membranes from the hypothyroid rat fat cell. Hypothyroidism appears to affect the ability of R to interact productively with Ns, without affecting either R number or Ns structure and function.  相似文献   
4.
Pertussis toxin abolishes hormonal inhibition of adenylate cyclase, hormonal stimulation of inositol 1,4,5-trisphosphate accumulation in rat fat-cells, and catalyses the ADP-ribosylation of two peptides, of Mr 39,000 and 41,000 [Malbon, Rapiejko & Mangano (1985) J. Biol. Chem. 260, 2558-2564]. The 41,000-Mr peptide is the alpha-subunit of the G-protein, referred to as Gi, that is believed to mediate inhibitory control of adenylate cyclase by hormones. The nature of the 39,000-Mr substrate for pertussis toxin was investigated. The fat-cell 39,000-Mr peptide was compared structurally and immunologically with the alpha-subunits of two other G-proteins, Gt isolated from the rod outer segments of bovine retina and Go isolated from bovine brain. After radiolabelling in the presence of pertussis toxin and [32P]NAD+, the electrophoretic mobilities of the fat-cell 39,000-Mr peptide and the alpha-subunits of Go and Gt were nearly identical. Partial proteolysis of these ADP-ribosylated proteins generates peptide patterns that suggest the existence of a high degree of homology between the fat-cell 39,000-Mr peptide and the alpha-subunit of Go. Antisera raised against purified G-proteins and their subunits were used to probe immunoblots of purified Gt, Gi, Go, and fat-cell membrane proteins. Although recognizing the 36,000-Mr beta-subunit band of Gt, Gi, Go and a 36,000-Mr fat-cell peptide, antisera raised against Gt failed to recognize either the 39,000- or the 41,000-Mr peptides of fat-cells or the alpha-subunits of Go and Gi. Antisera raised against the alpha-subunit of Go, in contrast, recognized the 39,000-Mr peptide of rat fat-cells, but not the alpha-subunit of either Gi or Gt. These data establish the identity of Go, in addition to Gi, in fat-cell membranes and suggest the possibility that either Go or Gi alone, or both, may mediate hormonal regulation of adenylate cyclase and phospholipase C.  相似文献   
5.
Lipolysis and cyclic AMP accumulation in response to beta-adrenergic agonists or forskolin are severely impaired in fat cells from the hypothyroid rat. Incubating hypothyroid rat fat cells with adenosine deaminase normalizes the cyclic AMP response to forskolin, but not to beta-adrenergic agonists. Increased sensitivity to adenosine action in the hypothyroid state appears to be the basis for the impaired cyclic AMP response to forskolin, but does not appear to be the underlying defect responsible for the impaired response to beta-adrenergic agonists.  相似文献   
6.
Abstract: Study of transmembrane signaling via G proteins has focused to a large extent upon investigations of individual G protein-linked receptor-effector systems. Agonist-induced desensitization and down-regulation of β-adrenergic receptors, for example, have been studied extensively and adopted as a general model for G protein-linked receptor regulation. This review focuses not only on agonist regulation of adrenergic receptor gene expression, but also on how agonists regulate opposing adrenergic receptor-mediated pathways. This important feature of G protein-mediated pathways, i.e., cross-regulation and integration of information among several pathways, will be discussed in the context of what has been learned in the adrenergic receptor-coupled pathways.  相似文献   
7.
1. G-protein-linked transmembrane signaling has emerged as a major pathway for information transduction across the cell membrane. 2. In addition to photopigments that propagate the signal from light, cell-surface receptors for hormones, neurotransmitters, and autacoids propagate signals from ligand binding to membrane-bound effector units via G-proteins. 3. Biochemical and molecular features of one prominent member of these receptors, the beta-adrenergic receptor, will be highlighted in the present article. 4. The role of the human epidermoid carcinoma A431 cells as a model for the study of the structure and biology of beta-adrenergic receptors will be emphasized. 5. A model for receptor regulation, gleaned from recent advances in the biochemistry, cell and molecular biology of beta-adrenergic receptors, is discussed.  相似文献   
8.
The pharmacology of (+/-)-hydroxybenzylisoproterenol with respect to stimulation of cyclic AMP accumulation by isolated rat fat cells and liver cells was examined. (+/-)-Hydroxybenzylisoproterenol was found to be a full agonist and twice as potent as (-)-isoproterenol in liver cells, and equipotent to (-)-isoproterenol in fat cells with regard to stimulating cyclic AMP accumulation. A study of the ability of this catecholamine to stimulate adenylate cyclase activity of broken-cell preparations revealed that (+/-)-hydroxybenzylisoproterenol was equipotent to (-)-isoproterenol in liver cell homogenates, while 3- to 4-fold more potent than (-)-isoproterenol in fat cell ghost membranes. (+/-)-Hydroxybenzylisoproterenol was also found to be as potent as (-)-isoproterenol in stimulating cyclase activity of S49 mouse lymphoma cell membranes. Competition studies of specific [125I]iodohydroxybenzylpindolol binding to liver cell membranes revealed a Kd of 10 nM for (+/-)-hydroxybenzylisoproterenol and 25 nM for (-)-isoproterenol binding to the liver beta-adrenergic receptor. Competition studies of specific (-)-[3H]dihydroalprenolol binding to fat cell membranes indicated a similar affinity of these sites for both (+/-)-hydroxybenzylisoproterenol and (-)-isoproterenol. The guanyl nucleotide Gpp(NH)p induced a shift in the curve for competition of (-)-[3H]dihydroalprenolol binding by (-)-isoproterenol to the right, but failed to do so when (+/-)-hydroxybenzylisoproterenol was the competing agonist. Properties of (+/-)-[3H]hydroxybenzylisoproterenol binding to fat cell or liver cell membranes were inconsistent with those expected of adenylate cyclase coupled beta-adrenergic receptors.  相似文献   
9.

Uxmal and Tulum are two important Mayan sites in the Yucatan peninsula. The buildings are mainly composed of limestone and grey/black discoloration is seen on exposed walls and copious greenish biofilms on inner walls. The principal microorganisms detected on interior walls at both Uxmal and Tulum were cyanobacteria; heterotrophic bacteria and filamentous fungi were also present. A dark‐pigmented mitosporic fungus and Bacillus cereus, both isolated from Uxmal, were shown to be acidogenic in laboratory cultures. Cyanobacteria belonging to rock‐degrading genera Synechocystis and Gloeocapsa were identified at both sites. Surface analysis previously showed that calcium ions were present in the biofilms on buildings at Uxmal and Tulum, suggesting the deposition of biosolubilized stone. Apart from their potential to degrade the substrate, the coccoid cyanobacteria supply organic nutrients for bacteria and fungi, which can produce organic acids, further increasing stone degradation.  相似文献   
10.
Gravin (AKAP12) is a membrane-associated scaffold that provides docking for protein kinases, phosphatases, and adaptor molecules obligate for resensitization and recycling of beta(2)-adrenergic receptors. Gravin binds to the cell membrane in a Ca(2+)-sensitive manner and to receptors through well characterized protein-protein interactions. Although the interaction of serine/threonine, cyclic AMP-dependent protein kinase with protein kinase A-anchoring proteins is well described and involves a kinase regulatory subunit binding domain in the C terminus of these proteins, far less is known about tyrosine kinase docking to members of this family of scaffolds. The non-receptor tyrosine kinase Src regulates resensitization of beta(2)-adrenergic receptors and docks to gravin. Gravin displays nine proline-rich domains distributed throughout the molecule. One class I ligand for Src homology domain 3 docking, found in the N terminus ((10)RXPXXP(15)) of gravin, is shown to bind Src. Binding of Src to gravin activates the intrinsic tyrosine kinase of Src. Mutagenesis/deletion of the class I ligand (P15A,P16A) on the N terminus of gravin abolishes both the docking of Src to gravin as well as the receptor resensitization and recycling catalyzed by gravin. The Src-binding peptide-(1-51) of gravin behaves as a dominant-negative for AKAP gravin regulation of receptor resensitization/recycling. The tyrosine kinase Src plays an essential role in the AKAP gravin-mediated receptor resensitization and recycling, an essential aspect of receptor biology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号