首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
生物科学   14篇
  2013年   2篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2001年   1篇
  1997年   2篇
  1990年   1篇
  1987年   1篇
  1982年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Summary A mathematical model was formulated to describe the kinetics and stoichiometry of growth and proteinase production in Bacillus megaterium. Synthesis of the extracellular proteinase in a batch culture is repressed by amino acids. The specific rate of formation of the enzyme (r E) can be described by the formula {ie373-1}, where k 2 and k 3 stand for the non-repressible and repressible part of enzyme synthesis respectively, k S 2 is a repression coefficient and S 2 indicates the concentration of amono acids; the values of k 2 and k S 2 depend on the composition of the mixture of amino acids. Even in a high concentration, a single amino acid is less effective than a mixture of amino acids. The dependence of the proteinase repression on the concentration of an external amino acid (leucine) follows the same course as its rate of incorporation into proteins, approaching saturation at concentrations higher than 50 M (half saturation approximately 10 M). However, the total uptake of leucine did not exhibit any saturation even at 500 M external concentration.Symbols X biomass concentration, g/l - E proteinase concentration, unit/l - t time, h - S 1 concentration of glucose, g/l - S 2 concentration of amino acids, g/l - specific growth rate, l/h - rE specific rate of enzyme production, unit/g/h - k 1 growth kinetic constant, l/h - k 2 product formation kinetic constant (for non-repressible part of enzyme synthesis), unit/g - k 3 product formation kinetic constant (for repressible portion of enzyme synthesis), unit/g - k S 1 saturation constant, g/l - k S 2 repression coefficient for a certain amino acid or amino acids mixture, g/l  相似文献   
2.
Cardiac energy metabolism with emphasis on mitochondria was addressed in atrial tissue from patients with overload-induced atrial dilation. Structural remodeling of dilated (D) atria manifested as intracellular accumulation of fibrillar aggregates, lipofuscin, signs of myolysis and autophagy. Despite impaired complex I dependent respiration and increased diffusion restriction for ADP, no changes regarding adenylate and creatine kinase occurred. We observed 7-fold overexpression of HK2 gene in D atria with concomitant 2-fold greater activation of mitochondrial oxygen consumption by glucose, which might represent an adaption to increased energy requirements and impaired mitochondrial function by effectively joining glycolysis and oxidative phosphorylation.  相似文献   
3.
4.
Expression and function of creatine kinase (CK), adenylate kinase (AK) and hexokinase (HK) isoforms in relation to their roles in regulation of oxidative phosphorylation (OXPHOS) and intracellular energy transfer were assessed in beating (B) and non-beating (NB) cardiac HL-l cell lines and adult rat cardiomyocytes or myocardium. In both types of HL-1 cells, the AK2, CKB, HK1 and HK2 genes were expressed at higher levels than the CKM, CKMT2 and AK1 genes. Contrary to the saponin-permeabilized cardiomyocytes the OXPHOS was coupled to mitochondrial AK and HK but not to mitochondrial CK, and neither direct transfer of adenine nucleotides between CaMgATPases and mitochondria nor functional coupling between CK-MM and CaMgATPases was observed in permeabilized HL-1 cells. The HL-1 cells also exhibited deficient complex I of the respiratory chain. In conclusion, contrary to cardiomyocytes where mitochondria and CaMgATPases are organized into tight complexes which ensure effective energy transfer and feedback signaling between these structures via specialized pathways mediated by CK and AK isoforms and direct adenine nucleotide channeling, these complexes do not exist in HL-1 cells due to less organized energy metabolism.  相似文献   
5.
The growth characteristics of Escherichia coli K-12 in the continuous culture with a smooth increase in the dilution rate (A-stat) of various carbon sources (glucose, acetate, succinate, glycerol, lactate, acetate + succinate, casamino, acids + glucose) were studied. For all substrates studied the maximum value of specific respiration rate, Q O2, remained between 14–18 mmol O2 h-1 g dwt-1 and the maximum growth rate varied from 0.22 h-1 on acetate to 0.77 h-1 on glucose + casamino acids. After the respiratory capacity of the cells was exhausted at growth rates µ < µcrit, the growth yield YXO2, increased slightly when the dilution rate increased. The maximum growth rate of Escherichia coli K12 was dependent on growth yield, respiratory capacity and glycolytic capacity of the strain. Analysis of the cultivation data using a stoichiometric flux model indicated that ATP synthesis in E. coli exceeds by two-fold that (theoretically) required to build up biomass. The experimental value of mATP < 4 mmol ATP h-1 g dwt-1 determined from A-stat cultivation data was low compared with the calculated unproductive hydrolysis of ATP (64–103 mmole ATP g dwt-1).  相似文献   
6.
A new method for continuous cultivation of microbes, called adaptastat, is described. It involves automatic adaptation of microbial cultures to their maximum feeding rates and avoids substrate accumulation. The state of the culture is estimated at intervals by briefly (and markedly) decreasing the substrate feeding rate and measuring, via the dissolved oxygen response, the time taken to exhaust the residual substrate. The method has been exemplified by cultivating Escherichia coli on single carbon sources (glucose, acetate, succinate, and fully deuteriated medium based on deuteriated succinate) and also by simultaneous limitation of two feeding channels (succinate/acetate and glucose/ammonium chloride). Several possible applications of the adaptastat technology are presented. The method provides an efficient means of labelling microbial components and products with stable isotopes. In particular, adaptastat technology can be used to adapt disabled bacterial strains to the use of simple, inexpensive substrates. It can also be used more generally in the study of microbial cell cultures, for example for the determination of maximum specific growth rates and the stoichiometric ratio of utilisation of two nutrients in conditions of simultaneous limitation.  相似文献   
7.
The aim of the study was to find out whether low phospholamban level in atria as compared with ventricles is associated with differences in sarcoplasmic reticular Ca2+-uptake and contractile performance. Relationship between phospholamban and -adrenergic stimulation in rat left atria and papillary muscles were examined by means of contractile measurements, sarcoplasmic reticular oxalate-supported Ca2+-uptake, and Western blotting of phosphorylated phospholamban. Phosphoprotein determination after -adrenergic stimulation demonstrated that the levels of Ser16 and Thr17 phosphorylated phospholamban in atria remained at about one-third of that in ventricles. However, comparison of sarcoplasmic reticular Ca2+-uptake in control and isoproterenol perfused preparations demonstrated that the effect of -adrenergic stimulation on sarcoplasmic reticular Ca2+-uptake was stronger in atrial preparations. Moreover, atria responded to isoproterenol with much larger increases in developed tension, contractility and relaxation rates than papillary muscles. Thus, despite lower level of phospholamban, the -adrenergic activation of sarcoplasmic reticular Ca2+-uptake and contractile indices are higher in atria.  相似文献   
8.
The aim of this study was to investigate the mechanism of cellular regulation of mitochondrial respiration in permeabilized cardiac cells with clearly different structural organization: (i) in isolated rat cardiomyocytes with very regular mitochondrial arrangement, (ii) in HL-1 cells from mouse heart, and (iii) in non-beating (NB HL-1 cells) without sarcomeres with irregular and dynamic filamentous mitochondrial network. We found striking differences in the kinetics of respiration regulation by exogenous ADP between these cells: the apparent Km for exogenous ADP was by more than order of magnitude (14 times) lower in the permeabilized non-beating NB HL-1 cells without sarcomeres (25+/-4 microM) and seven times lower in normally cultured HL-1 cells (47+/-15 microM) than in permeabilized primary cardiomyocytes (360+/-51 microM). In the latter cells, treatment with trypsin resulted in dramatic changes in intracellular structure that were associated with 3-fold decrease in apparent Km for ADP in regulation of respiration. In contrast to permeabilized cardiomyocytes, in NB HL-1 cells creatine kinase activity was low and the endogenous ADP fluxes from MgATPases recorded spectrophotometrically by the coupled enzyme assay were not reduced after activation of mitochondrial oxidative phosphorylation by the addition of mitochondrial substrates, showing the absence of ADP channelling in the NB HL-1 cells. While in the permeabilized cardiomyocytes creatine strongly activated mitochondrial respiration even in the presence of powerful competing pyruvate kinase-phosphoenolpyruvate system, in the NB HL-1 cells the stimulatory effect of creatine was not significant. The results of this study show that in normal adult cardiomyocytes and HL-1 cells intracellular local restrictions of diffusion of adenine nucleotides and metabolic feedback regulation of respiration via phosphotransfer networks are different, most probably related to differences in structural organization of these cells.  相似文献   
9.
10.
The present study was undertaken to compare the effects of hypothyroidism and hyperthyroidism on sarcoplasmic reticulum (SR) Ca2+-pump activity, together with assessment of the functional role of SR in providing activator Ca2+ under these altered thyroid states. In response to a shift from hypothyroid to hyperthyroid state, a 10 fold and 2 fold increase in SR Ca2+-pump activity in atria and ventricles, respectively, were observed. This was associated with the 8-9 fold increases in atrial contractility (+dT/dt) and relaxation (-dT/dt), but only with a 3-4 fold increase in their ventricular counterparts. Also, the recirculation fraction of activator Ca2+ (RFA) increased to a far greater extent in atria (4 fold) than in papillary muscles, and the relative increment in inhibition of developed tension by ryanodine became 3 times larger in atria than in papillary muscles. A positive force-frequency relationship (FFR) was observed in hypothyroid atria, whereas the hyperthyroid atria, hypothyroid and hyperthyroid papillary muscles showed a negative FFR. These results suggest the greater role of transsarcolemmal (SL) Ca2+ and smaller role of SR Ca2+ in activating contraction in hypothyroid atria compared to other preparations. Thyroid hormones decrease the contribution of SL and increase that of SR in providing activator Ca2+ to the greater extent in atria than in ventricles. This effect of thyroid hormones is based on larger stimulation of SR Ca2+-pump in atria compared to ventricles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号