首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   1篇
生物科学   45篇
  2020年   1篇
  2018年   2篇
  2016年   5篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2003年   3篇
  2002年   2篇
  2000年   2篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1965年   1篇
  1953年   1篇
排序方式: 共有45条查询结果,搜索用时 18 毫秒
1.

Systemic necrotizing vasculitis comprises a group of diseases resembling polyarteritis nodosa and anti-neutrophil cytoplasmic antibody-associated vasculitis (ANCA): granulomatosis with polyangiitis, eosinophilic granulomatosis with polyangiitis, and microscopic polyangiitis. The definitive diagnosis is made in cooperation with a reference center for autoimmune diseases and rare systemic diseases or a competency center. The management goals are: to obtain remission and, in the long term, healing; to reduce the risk of relapses; to limit and reduce the sequelae linked to the disease; to limit the side effects and the sequelae linked to the treatments; to improve or at least maintain the best possible quality of life; and to maintain socio-professional integration and/or allow a rapid return to school and/or professional activity. Information and therapeutic education of the patients and those around them are an integral part of the care. All health professionals and patients should be informed of the existence of patient associations. The treatment of vasculitis is based on variable combinations of glucocorticoids and immunosuppressants, chosen and adapted according to the disease concerned, the severity and/or extent of the disease, and the underlying factors (age, kidney function, etc.). Follow-up clinical and paraclinical examinations must be carried out regularly to clarify the progression of the disease, detect and manage treatment failures and possible relapses early on, and limit sequelae and complications (early then late) related to the disease or treatment. A distinction is made between the induction therapy, lasting approximately 3–6 months and aimed at putting the disease into remission, and the maintenance treatment, lasting 12–48 months, or even longer. The role of the increase or testing positive again for ANCA as a predictor of a relapse, which has long been controversial, now seems to have greater consensus: Anti-myeloperoxidase ANCAs are less often associated with a relapse of vasculitis than anti-PR3 ANCA.

  相似文献   
2.
We have used new generation sequencing (NGS) technologies to identify single nucleotide polymorphism (SNP) markers from three European pear (Pyrus communis L.) cultivars and subsequently developed a subset of 1096 pear SNPs into high throughput markers by combining them with the set of 7692 apple SNPs on the IRSC apple Infinium® II 8K array. We then evaluated this apple and pear Infinium® II 9K SNP array for large-scale genotyping in pear across several species, using both pear and apple SNPs. The segregating populations employed for array validation included a segregating population of European pear (‘Old Home’בLouise Bon Jersey’) and four interspecific breeding families derived from Asian (P. pyrifolia Nakai and P. bretschneideri Rehd.) and European pear pedigrees. In total, we mapped 857 polymorphic pear markers to construct the first SNP-based genetic maps for pear, comprising 78% of the total pear SNPs included in the array. In addition, 1031 SNP markers derived from apple (13% of the total apple SNPs included in the array) were polymorphic and were mapped in one or more of the pear populations. These results are the first to demonstrate SNP transferability across the genera Malus and Pyrus. Our construction of high density SNP-based and gene-based genetic maps in pear represents an important step towards the identification of chromosomal regions associated with a range of horticultural characters, such as pest and disease resistance, orchard yield and fruit quality.  相似文献   
3.
Rosy apple aphid (Dysaphis plantaginea), is one of the major insect pests of apple, causing serious physical and economic damage to fruit production. A dominant resistance gene Dp-fl was previously mapped at the bottom of linkage group LG8 from the cultivar ‘Florina’, linked to the SSR CH01h10. The development of additional genetic markers mapping closer to Dp-fl was needed to position the gene accurately and to improve the effectiveness of marker-assisted breeding (MAB). The aims of this study were to identify single nucleotide polymorphisms (SNPs) in the region of Dp-fl and to position these SNPs relative to Dp-fl. To generate a fine map of the Dp-fl interval, a total of 191 plants segregating for resistance and derived from four different populations were tested with temperature-switch PCR (TSP) markers developed for SNPs located in the region of CH01h10. All the plants were phenotypically evaluated for aphid resistance and those data compared with the genetic data. These efforts resulted in positioning the Dp-fl resistance locus in a genetic interval corresponding to a physical distance of about 330 kb on the ‘Golden Delicious’ genome. The new markers were tested on several apple founder cultivars in order to test the specificity of the SNPs and, thus, the best markers for the MAB were identified. Finally, the 330-kb interval was analyzed for the identification of coding sequences and putative candidate genes for D. plantaginea resistance were identified.  相似文献   
4.
A segregating population of 91 hybrids issued from a cross between a dihaploid rose, derived from the haploidisation of a modern cultivar, and a diploid species was used to construct linkage maps of the parental genomes. As in other recent genetic studies in Rosa, AFLPs were used as molecular markers. Two segregating qualitative traits, recurrent blooming and double corolla, already known to be inherited as single recessive and dominant genes, respectively, were recorded in the mapping population. A quantitative trait, thorn density of the shoots, was also evaluated in this population. Sixty eight and 108 AFLP markers located on 8 and 6 linkage groups could be analysed in the female and male parent, respectively. The two recorded qualitative phenotypic markers were mapped as well as the quantitative one, after having performed QTL analyses on the parental maps in the latter case. It appears that thorn quantity is controlled by a major and a minor QTL which are located on the same linkage group at 36.5 and 3.2 cM from the single seasonal-blooming gene, respectively.  相似文献   
5.
We used a new method called nucleotide-binding site (NBS) profiling to identify and map resistance gene analogues (RGAs) in apple. This method simultaneously allows the amplification and the mapping of genetic markers anchored in the conserved NBS-encoding domain of plant disease resistance genes. Ninety-four individuals belonging to an F1 progeny derived from a cross between the apple cultivars Discovery and TN10-8 were studied. Two degenerate primers designed from the highly conserved P-loop motif within the NBS domain were used together with adapter primers. Forty-three markers generated with NBS profiling could be mapped in this progeny. After sequencing, 23 markers were identified as RGAs, based on their homologies with known resistance genes or NBS/leucine-rich-repeat-like genes. Markers were mapped on 10 of the 17 linkage groups of the apple genetic map used. Most of these markers were organized in clusters. Twenty-five markers mapped close to major genes or quantitative trait loci for resistance to scab and mildew previously identified in different apple progenies. Several markers could become efficient tools for marker-assisted selection once converted into breeder-friendly markers. This study demonstrates the efficiency of the NBS-profiling method for generating RGA markers for resistance loci in apple.  相似文献   
6.
Powdery mildew, caused by the ascomycete fungus Podosphaera leucotricha, is one of the most damaging diseases of apple worldwide. Polygenically determined resistance might contribute to a significant increase of resistance to this disease in new cultivars. A quantitative trait locus (QTL) analysis was performed in an F1 progeny derived from a cross between the apple cultivar Discovery and the apple hybrid TN10-8. Powdery mildew incidence was assessed during four years (five seasons) in spring and/or autumn in a French local orchard. Seven additive and/or dominant QTLs were detected over the five seasons, with effects (R 2) ranging from 7.5% to 27.4% of the progeny phenotypic variation. Two QTLs, on linkage groups (LGs) 2 and 13, were consistently identified and accounted together from 29% to 37% of the phenotypic variation according to the year of assessment. The other QTLs were identified during one (LGs 1, 14), two (LG10), or three (LGs 8, 17) seasons. Their instability indicated a changing genetic determinism according to the year of assessment, for which several hypotheses may be put forward. The QTLs on LGs 2 and 8 mapped close to clusters of resistance gene analogs (RGAs) and major genes for resistance to mildew or apple scab previously identified. The stable QTLs identified on LGs 2 and 13, together with the strong effect QTL located on LG 8, are of special interest for breeding purposes, especially if combined with other major resistance genes.  相似文献   
7.
An integrated consensus genetic map for apple was constructed on the basis of segregation data from four genetically connected crosses (C1?=?Discovery × TN10-8, C2?=?Fiesta × Discovery, C3?=?Discovery × Prima, C4?=?Durello di Forli × Fiesta) with a total of 676 individuals using CarthaGene® software. First, integrated female–male maps were built for each population using common female–male simple sequence repeat markers (SSRs). Then, common SSRs over populations were used for the consensus map integration. The integrated consensus map consists of 1,046 markers, of which 159 are SSR markers, distributed over 17 linkage groups reflecting the basic chromosome number of apple. The total length of the integrated consensus map was 1,032 cM with a mean distance between adjacent loci of 1.1 cM. Markers were proportionally distributed over the 17 linkage groups (χ 2?=?16.53, df?=?16, p?=?0.41). A non-uniform marker distribution was observed within all of the linkage groups (LGs). Clustering of markers at the same position (within a 1-cM window) was observed throughout LGs and consisted predominantly of only two to three linked markers. The four integrated female–male maps showed a very good colinearity in marker order for their common markers, except for only two (CH01h01, CH05g03) and three (CH05a02z, NZ02b01, Lap-1) markers on LG17 and LG15, respectively. This integrated consensus map provides a framework for performing quantitative trait locus (QTL) detection in a multi-population design and evaluating the genetic background effect on QTL expression.  相似文献   
8.
Most cultivated apple cultivars are highly susceptible to fire blight, caused by Erwinia amylovora. However, differences in resistance levels are observed among cultivars and could be used in breeding. In this paper, we investigated the genetic basis of fire blight resistance of the cultivar ‘Enterprise’ and the advanced breeding selection X-6398. Genotyped pedigrees were used for validating and curating historic pedigree records. Various quantitative trait locus (QTL) discovery approaches were applied on the full-sib families ‘Gala’ × ‘Enterprise’ (GaEn) and X-6398 × X-6683 (IW) with the software FlexQTL? and MapQTL®. The paternal lineage of ‘Enterprise’ was reconstructed and showed to include ‘Cox’s Orange Pippin’. The QTLs found varied with the software used. Using FlexQTL?, two were found on linkage groups (LGs) 7 and 13, favourable alleles inherited by Enterprise from ‘Cox’s Orange Pippin’ and ‘Golden Delicious’, respectively. The former was identical to the previously named FB_F7 allele from ‘Fiesta’, while the latter is new and has been named FB_13GD. X-6398 had a QTL at the same position as FB_F7. Its favourable allele was new, originating from the unknown grandfather of X-4598, and was named FB_7X-6398. Using MapQTL® on GaEn, FB_F7 was also identified. Performing the same analysis on the subset of offspring that carried the favourable allele of FB_F7, two putative QTLs on LG8 and on top of LG13 were identified, which showed interactions with FB_F7. Implication of the findings for breeding for fire blight-resistant apples is discussed. Single nucleotide polymorphism data on Enterprise and its ancestors are provided.  相似文献   
9.
A series of 21 multiplex (MP) polymerase chain reactions containing simple sequence repeat (SSR) markers spanning most of the apple genome has been developed. Eighty-eight SSR markers, well distributed over all 17 linkage groups (LGs), have been selected. Eighty-four of them were included in 21 different MPs while four could not be included in any MPs. The 21 MPs were then used to genotype approximately 2,000 DNA samples from the European High-quality Disease-Resistant Apples for a Sustainable agriculture project. Two SSRs (CH01d03 and NZAL08) were discarded at an early stage as they did not produce stable amplifications in the MPs, while the scoring of the multilocus (ML) SSR Hi07d11 and CN44794 was too complex for large-scale genotyping. The testing of the remaining 80 SSRs over a large number of different genotypes allowed: (1) a better estimation of their level of polymorphism; as well as of (2) the size range of the alleles amplified; (3) the identification of additional unmapped loci of some ML SSRs; (4) the development of methods to assign alleles to the different loci of ML SSRs and (5) conditions at which an SSR previously described as ML would amplify alleles of a single locus to be determined. These data resulted in the selection of 75 SSRs out of the 80 that are well suited and recommended for large genotyping projects. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
10.
The cultivated apple is susceptible to several pests including the rosy apple aphid (RAA; Dysaphis plantaginea Passerini), control of which is mainly based on chemical treatments. A few cases of resistance to aphids have been described in apple germplasm resources, laying the basis for the development of new resistant cultivars by breeding. The cultivar ‘Florina’ is resistant to RAA, and recently, the Dp-fl locus responsible for its resistance was mapped on linkage group 8 of the apple genome. In this paper, a chromosome walking approach was performed by using a ‘Florina’ bacterial artificial chromosome (BAC) library. The walking started from the available tightly linked molecular markers flanking the resistance region. Various walking steps were performed in order to identify the minimum tiling path of BAC clones covering the Dp-fl region from both the “resistant” and “susceptible” chromosomes of ‘Florina’. A genomic region of about 279 Kb encompassing the Dp-fl resistance locus was fully sequenced by the PacBio technology. Through the development of new polymorphic markers, the mapping interval around the resistance locus was narrowed down to a physical region of 95 Kb. The annotation of this sequence resulted in the identification of four candidate genes putatively involved in the RAA resistance response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号