首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   11篇
生物科学   137篇
  2023年   2篇
  2021年   5篇
  2020年   2篇
  2019年   5篇
  2018年   5篇
  2017年   4篇
  2016年   7篇
  2015年   6篇
  2014年   10篇
  2013年   5篇
  2012年   14篇
  2011年   9篇
  2010年   6篇
  2009年   6篇
  2008年   11篇
  2007年   5篇
  2006年   8篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   6篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
排序方式: 共有137条查询结果,搜索用时 15 毫秒
1.
Journal of Ethology - Animals emit predator-elicited calls in response to potential predation threats. These vocalizations induce a variety of anti-predator behaviors in conspecific receivers...  相似文献   
2.
Differential treatment of kin is ubiquitous in social animals. Parents often behave preferentially towards their dependent offspring. Species in several taxa also bias behaviour towards non-descendent kin. This latter phenomenon has not been demonstrated in marsupials, which are reportedly less social than eutherian mammals. We report the first evidence of non-parental kin-biased behaviour in a macropodid marsupial. Experimental pairing of individuals based on kinship reliably altered the rate of aggression between individuals in pairs of female tammar wallabies ( Macropus eugenii ). This effect is probably attributable to relatedness rather than to familiarity. Marsupial sociality may be substantially more complex than is currently recognized.  相似文献   
3.
We studied the degree to which alpine marmot (Marmota marmota L.) alarm calls function as communication about specific external stimuli. Alpine marmots emit variable alarm calls when they encounter humans, dogs, and several species of aerial predators. The first part of the study involved observations and manipulations designed to document contextual variation in alarm calls. Alarm calls varied along several acoustic parameters, but only along one that we examined, the number of notes per call, was significantly correlated with the type of external stimulus. Marmots were more likely to emit single-note alarm calls as their first or only call in response to an aerial stimulus, and multiple-note alarm calls when first calling to a terrestrial stimulus. This relationship was not without exceptions; there was considerable variation in the number of notes they emitted to both aerial and terrestrial stimuli, and a single stimulus type — humans — elicited a wide range of acoustic responses. The second part of the study involved playing back three types of alarm calls to marmots and observing their responses. Marmots did not have overtly different responses to the three types of played-back alarm calls. Our results are consistent with the hypotheses that: 1. Alarm calls do not refer to specific external stimuli; 2. Alarm calls function to communicate the degree of risk a caller experiences; and 3. Alarm calls require additional contextual cues to be properly interpreted by conspecifics.  相似文献   
4.
5.
Arik Kershenbaum  Daniel T. Blumstein  Marie A. Roch  Çağlar Akçay  Gregory Backus  Mark A. Bee  Kirsten Bohn  Yan Cao  Gerald Carter  Cristiane Cäsar  Michael Coen  Stacy L. DeRuiter  Laurance Doyle  Shimon Edelman  Ramon Ferrer‐i‐Cancho  Todd M. Freeberg  Ellen C. Garland  Morgan Gustison  Heidi E. Harley  Chloé Huetz  Melissa Hughes  Julia Hyland Bruno  Amiyaal Ilany  Dezhe Z. Jin  Michael Johnson  Chenghui Ju  Jeremy Karnowski  Bernard Lohr  Marta B. Manser  Brenda McCowan  Eduardo Mercado III  Peter M. Narins  Alex Piel  Megan Rice  Roberta Salmi  Kazutoshi Sasahara  Laela Sayigh  Yu Shiu  Charles Taylor  Edgar E. Vallejo  Sara Waller  Veronica Zamora‐Gutierrez 《Biological reviews of the Cambridge Philosophical Society》2016,91(1):13-52
Animal acoustic communication often takes the form of complex sequences, made up of multiple distinct acoustic units. Apart from the well‐known example of birdsong, other animals such as insects, amphibians, and mammals (including bats, rodents, primates, and cetaceans) also generate complex acoustic sequences. Occasionally, such as with birdsong, the adaptive role of these sequences seems clear (e.g. mate attraction and territorial defence). More often however, researchers have only begun to characterise – let alone understand – the significance and meaning of acoustic sequences. Hypotheses abound, but there is little agreement as to how sequences should be defined and analysed. Our review aims to outline suitable methods for testing these hypotheses, and to describe the major limitations to our current and near‐future knowledge on questions of acoustic sequences. This review and prospectus is the result of a collaborative effort between 43 scientists from the fields of animal behaviour, ecology and evolution, signal processing, machine learning, quantitative linguistics, and information theory, who gathered for a 2013 workshop entitled, ‘Analysing vocal sequences in animals’. Our goal is to present not just a review of the state of the art, but to propose a methodological framework that summarises what we suggest are the best practices for research in this field, across taxa and across disciplines. We also provide a tutorial‐style introduction to some of the most promising algorithmic approaches for analysing sequences. We divide our review into three sections: identifying the distinct units of an acoustic sequence, describing the different ways that information can be contained within a sequence, and analysing the structure of that sequence. Each of these sections is further subdivided to address the key questions and approaches in that area. We propose a uniform, systematic, and comprehensive approach to studying sequences, with the goal of clarifying research terms used in different fields, and facilitating collaboration and comparative studies. Allowing greater interdisciplinary collaboration will facilitate the investigation of many important questions in the evolution of communication and sociality.  相似文献   
6.
The failure of environmental education (and how we can fix it)   总被引:1,自引:1,他引:0  
  相似文献   
7.
It is often beneficial for animals to discriminate between different threats and to habituate to repeated exposures of benign stimuli. While much is known about risk perception in vertebrates and some invertebrates, risk perception in marine invertebrates is less extensively studied. One method to study risk perception is to habituate animals to a series of exposures to one stimulus, and then present a novel stimulus to test if it transfers habituation. Transfer of habituation is seen as a continued decrease in response while lack of transfer is seen either by having a similar or greater magnitude response. We asked whether giant clams (Tridacna maxima) discriminate between biologically relevant types of threats along a risk gradient. Giant clams retract their mantle and close their shell upon detecting a threat. While closed, they neither feed nor photosynthesize, and prior work has shown that the cost of being closed increases as the duration of their response increases. We recorded a clam's latency to emerge after simulated threats chosen to represent a risk gradient: exposure to a small shading event, a medium shading event, a large shading event (chosen to simulate fish swimming above them), tapping on their shell and touching their mantle (chosen to simulate different degrees of direct attack). Although these stimuli are initially perceived as threatening, we expected clams to habituate to them because they are ultimately non‐damaging and it would be costly for clams to remain closed for extended periods of time when there is no threat present. Clams had different initial latencies to emerge and different habituation rates to these treatments, and they did not transfer habituation to higher risk stimuli and to some lower risk stimuli. These results suggest that clams discriminated between these stimuli along a risk gradient and the lack of habituation transfer shows that the new stimulus was perceived as a potential threat. This study demonstrates that sessile bivalves can discern between levels of predatory threat. These photosynthetic clams may benefit from being able to categorize predator cues for efficient energy allocation.  相似文献   
8.
9.
Describing and quantifying animal personality is now an integral part of behavioural studies because individually distinctive behaviours have ecological and evolutionary consequences. Yet, to fully understand how personality traits may respond to selection, one must understand the underlying heritability and genetic correlations between traits. Previous studies have reported a moderate degree of heritability of personality traits, but few of these studies have either been conducted in the wild or estimated the genetic correlations between personality traits. Estimating the additive genetic variance and covariance in the wild is crucial to understand the evolutionary potential of behavioural traits. Enhanced environmental variation could reduce heritability and genetic correlations, thus leading to different evolutionary predictions. We estimated the additive genetic variance and covariance of docility in the trap, sociability (mirror image stimulation), and exploration and activity in two different contexts (open‐field and mirror image simulation experiments) in a wild population of yellow‐bellied marmots (Marmota flaviventris). We estimated both heritability of behaviours and of personality traits and found nonzero additive genetic variance in these traits. We also found nonzero maternal, permanent environment and year effects. Finally, we found four phenotypic correlations between traits, and one positive genetic correlation between activity in the open‐field test and sociability. We also found permanent environment correlations between activity in both tests and docility and exploration in the MIS test. This is one of a handful of studies to adopt a quantitative genetic approach to explain variation in personality traits in the wild and, thus, provides important insights into the potential variance available for selection.  相似文献   
10.

Background

Animals typically show less habituation to biologically meaningful sounds than to novel signals. We might therefore expect that acoustic deterrents should be based on natural sounds.

Methodology

We investigated responses by western grey kangaroos (Macropus fulignosus) towards playback of natural sounds (alarm foot stomps and Australian raven (Corvus coronoides) calls) and artificial sounds (faux snake hiss and bull whip crack). We then increased rate of presentation to examine whether animals would habituate. Finally, we varied frequency of playback to investigate optimal rates of delivery.

Principal Findings

Nine behaviors clustered into five Principal Components. PC factors 1 and 2 (animals alert or looking, or hopping and moving out of area) accounted for 36% of variance. PC factor 3 (eating cessation, taking flight, movement out of area) accounted for 13% of variance. Factors 4 and 5 (relaxing, grooming and walking; 12 and 11% of variation, respectively) discontinued upon playback. The whip crack was most evocative; eating was reduced from 75% of time spent prior to playback to 6% following playback (post alarm stomp: 32%, raven call: 49%, hiss: 75%). Additionally, 24% of individuals took flight and moved out of area (50 m radius) in response to the whip crack (foot stomp: 0%, raven call: 8% and 4%, hiss: 6%). Increasing rate of presentation (12x/min ×2 min) caused 71% of animals to move out of the area.

Conclusions/Significance

The bull whip crack, an artificial sound, was as effective as the alarm stomp at eliciting aversive behaviors. Kangaroos did not fully habituate despite hearing the signal up to 20x/min. Highest rates of playback did not elicit the greatest responses, suggesting that ‘more is not always better’. Ultimately, by utilizing both artificial and biological sounds, predictability may be masked or offset, so that habituation is delayed and more effective deterrents may be produced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号