首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   15篇
生物科学   150篇
  2016年   5篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   6篇
  2011年   7篇
  2010年   1篇
  2009年   11篇
  2008年   4篇
  2007年   8篇
  2006年   3篇
  2005年   3篇
  2004年   6篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  2000年   5篇
  1999年   8篇
  1998年   2篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1983年   2篇
  1981年   5篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1975年   2篇
  1973年   2篇
  1935年   1篇
  1933年   1篇
  1932年   2篇
排序方式: 共有150条查询结果,搜索用时 15 毫秒
1.
N epsilon-(Carboxymethyl)lysine (CML) has been identified as a product of oxidation of fructoselysine (FL) in glycated (nonenzymatically glycosylated) proteins in vitro and has also been detected in human tissues and urine [Ahmed et al. (1986) J. Biol. Chem. 261, 4889-4894]. In this study, we compare the amounts of CML and FL in normal human lens proteins, aged 0-79 years, using specific and sensitive assays based on selected ion monitoring gas chromatography-mass spectrometry. Our results indicate that the lens content of FL increases significantly between infancy and about age 5 but that there is only a slight, statistically insignificant increase in FL between age 5 and 80 (mean +/- SD = 1.4 +/- 0.4 mmol of FL/mol of Lys). In contrast, the lens content of the oxidation product, CML, increased linearly with age, ranging from trace levels at infancy up to 8 mmol of CML/mol of lysine at age 79. The ratio of CML to FL also increased linearly from 0.5 to 5 mol of CML/mol of FL between age 1 and 79, respectively. These results indicate that CML, rather than FL, is the major product of glycation detectable in adult human lens protein. The age-dependent accumulation of CML in lens protein indicates that products of both glycation and oxidation accumulate in the lens with age, while the constant rate of accumulation of CML in lens with age argues against an age-dependent decline in free radical defense mechanisms in this tissue.  相似文献   
2.
The chemistry of Maillard or browning reactions of glycated proteins was studied using the model compound, N alpha-formyl-N epsilon-fructoselysine (fFL), an analog of glycated lysine residues in protein. Incubation of fFL (15 mM) at physiological pH and temperature in 0.2 M phosphate buffer resulted in formation of N epsilon-carboxymethyllysine (CML) in about 40% yield after 15 days. CML was formed by oxidative cleavage of fFL between C-2 and C-3 of the carbohydrate chain and erythronic acid (EA) was identified as the split product formed in the reaction. Neither CML nor EA was formed from fFL under a nitrogen atmosphere. The rate of formation of CML was dependent on phosphate concentration in the incubation mixture and the reaction was shown to occur by a free radical mechanism. CML was also identified by amino acid analysis in hydrolysates of both poly-L-lysine and bovine pancreatic ribonuclease glycated in phosphate buffer under air. CML was also detected in human lens proteins and tissue collagens by HPLC and the identification was confirmed by gas chromatography/mass spectroscopy. The presence of both CML and EA in human urine suggests that they are formed by degradation of glycated proteins in vivo. The browning of fFL incubation mixtures proceeded to a greater extent under a nitrogen versus an air atmosphere, suggesting that oxidative degradation of Amadori adducts to form CML may limit the browning reactions of glycated proteins. Since the reaction products, CML and EA, are relatively inert, both chemically and metabolically, oxidative cleavage of Amadori adducts may have a role in limiting the consequences of protein glycation in the body.  相似文献   
3.
The distribution of Na+ pump sites (Na+-K+-ATPase) in the secretory epithelium of the avian salt gland was demonstrated by freeze-dry autoradiographic analysis of [(3)H] ouabain binding sites. Kinetic studies indicated that near saturation of tissue binding sites occurred when slices of salt glands from salt-stressed ducks were exposed to 2.2 μM ouabain (containing 5 μCi/ml [(3)H]ouabain) for 90 min. Washing with label-free Ringer's solution for 90 min extracted only 10% of the inhibitor, an amount which corresponded to ouabain present in the tissue spaces labeled by [(14)C]insulin. Increasing the KCl concentration of the incubation medium reduced the rate of ouabain binding but not the maximal amount bound. In contrast to the low level of ouabain binding to salt glands of ducks maintained on a freshwater regimen, exposure to a salt water diet led to a more than threefold increase in binding within 9-11 days. This increase paralleled the similar increment in Na+-K+-ATPase activity described previously. [(3)H]ouabain binding sites were localized autoradiographically to the folded basolateral plasma membrane of the principal secretory cells. The luminal surfaces of these cells were unlabeled. Mitotically active peripheral cells were also unlabeled. The cell-specific pattern of [(3)H]ouabain binding to principal secretory cells and the membrane-specific localization of binding sites to the nonluminal surfaces of these cells were identical to the distribution of Na+-K+-ATPase as reflected by the cytochemical localization of ouabain-sensitive and K+-dependent nitrophenyl phosphatase activity. The relationship between the nonluminal localization of Na+-K+-ATPase and the possible role of the enzyme n NaCl secretion is considered in the light of physiological data on electrolyte transport in salt glands and other secretory epithelia.  相似文献   
4.
The concept of "stimulus-secretion coupling" suggested by Douglas and co-workers to explain the events related to monamine discharge by the adrenal medulla (5, 7) may be applied to other endocrine tissues, such as adrenal cortex (36), pancreatic islets (4), and magnocellular hypothalamic neurons (6), which exhibit a similar ion-dependent process of hormone elaboration. In addition, they share another feature, that of joining neighbor cells via membrane junctions (12, 26, and Fletcher, unpublished observation). Given this, and the reports that hormone secretion by the pars distalis also involves a secretagogue-induced decrease in membrane bioelectric potential accompanied by a rise in cellular [Ca++] (27, 34, 41), it was appropriate to test the possibility that cells of the anterior pituitary gland are united by junctions.  相似文献   
5.
Triple-negative breast cancer (TNBC) represents an aggressive subtype, for which radiation and chemotherapy are the only options. Here we describe the identification of disulfiram, an FDA-approved drug used to treat alcoholism, as well as the related compound thiram, as the most potent growth inhibitors following high-throughput screens of 3185 compounds against multiple TNBC cell lines. The average IC50 for disulfiram was ~300 nM. Drug affinity responsive target stability (DARTS) analysis identified IQ motif-containing factors IQGAP1 and MYH9 as direct binding targets of disulfiram. Indeed, knockdown of these factors reduced, though did not completely abolish, cell growth. Combination treatment with 4 different drugs commonly used to treat TNBC revealed that disulfiram synergizes most effectively with doxorubicin to inhibit cell growth of TNBC cells. Disulfiram and doxorubicin cooperated to induce cell death as well as cellular senescence, and targeted the ESA+/CD24-/low/CD44+ cancer stem cell population. Our results suggest that disulfiram may be repurposed to treat TNBC in combination with doxorubicin.  相似文献   
6.
This study was conducted to examine the psycho-emotional effects of repeated oral exposure to capsaicin, the principal active component of chili peppers. Each rat received 1 mL of 0.02% capsaicin into its oral cavity daily, and was subjected to behavioural tests following 10 daily administrations of capsaicin. Stereotypy counts and rostral grooming were significantly increased, and caudal grooming decreased, in capsaicin-treated rats during the ambulatory activity test. In elevated plus maze test, not only the time spent in open arms but also the percent arm entry into open arms was reduced in capsaicin-treated rats compared with control rats. In forced swim test, although swimming duration was decreased, struggling increased in the capsaicin group, immobility duration did not differ between the groups. Repeated oral capsaicin did not affect the basal levels of plasma corticosterone; however, the stress-induced elevation of plasma corticosterone was prolonged in capsaicin treated rats. Oral capsaicin exposure significantly increased c-Fos expression not only in the nucleus tractus of solitarius but also in the paraventricular nucleus. Results suggest that repeated oral exposure to capsaicin increases anxiety-like behaviours in rats, and dysfunction of the hypothalamic-pituitary-adrenal axis may play a role in its pathophysiology.  相似文献   
7.
Synovial fluid is a approximately 0.15% (w/v) aqueous solution of hyaluronic acid (HA), a polysaccharide consisting of alternating units of GlcA and GlcNAc. In synovial fluid of patients suffering from rheumatoid arthritis, HA is thought to be degraded either by radicals generated by Fenton chemistry (Fe2+/H2O2) or by NaOCl generated by myeloperoxidase. We investigated the course of model reactions of these two reactants in physiological buffer with HA, and with the corresponding monomers GlcA and GlcNAc. meso-Tartaric acid, arabinuronic acid, arabinaric acid and glucaric acid were identified by GC-MS as oxidation products of glucuronic acid. When GlcNAc was oxidised, erythronic acid, arabinonic acid, 2-acetamido-2-deoxy-gluconic acid, glyceric acid, erythrose and arabinose were formed. NaOCl oxidation of HA yielded meso-tartaric acid; in addition, arabinaric acid and glucaric acid were obtained by oxidation with Fe2+/H2O2. These results indicate that oxidative degradation of HA proceeds primarily at glucuronic acid residues. meso-Tartaric acid may be a useful biomarker of hyaluronate oxidation since it is produced by both NaOCl and Fenton chemistry.  相似文献   
8.
Advanced glycation end products (AGE), formed by nonenzymatic Maillard reactions between carbohydrate and protein, contribute to the increase in chemical modification and crosslinking of tissue proteins with age. Acceleration of AGE formation in collagen during hyperglycemia, with resultant effects on vascular elasticity and basement membrane permeability, is implicated in the pathogenesis of diabetic complications. AGE-breakers, such as N-phenacylthiazolium (PTB) and N-phenacyl-4,5-dimethylthiazolium (PMT) halides, have been proposed as therapeutic agents for reversing the increase in protein crosslinking in aging and diabetes. We have confirmed that these compounds, as well as the AGE-inhibitor pyridoxamine (PM), cleave the model AGE crosslink, phenylpropanedione, and have studied the effects of these compounds in reversing the increased crosslinking of skin and tail collagen isolated from diabetic rats. Crosslinking of skin collagen, measured as the half-time for solubilization of collagen by pepsin in 0.5M acetic acid, was increased approximately 5-fold in diabetic, compared to nondiabetic rats. Crosslinking of tail tendon collagen, measured as insolubility in 0.05 N acetic acid, was increased approximately 10-fold. Collagen preparations were incubated in the presence or absence of AGE-breakers or PM in phosphate buffer, pH 7.4, for 24h at 37 degrees C. These treatments did not decrease the half-time for solubilization of diabetic skin collagen by pepsin or increase the acid solubility of diabetic tail tendon collagen. We conclude that, although AGE-breakers and PM cleave model crosslinks, they do not significantly cleave AGE crosslinks formed in vivo in skin collagen of diabetic rats.  相似文献   
9.
Menadione (MQ), a quinone used with cancer chemotherapeutic agents, causes cytotoxicity to endothelial cells (EC). Previous studies have suggested that MQ induces an oxidative stress and dysfunction in EC by either increasing hydrogen peroxide (H(2)O(2)) production or depleting intracellular glutathione (GSH), the main intracellular antioxidant. Since a primary function of EC is to form a barrier to fluid movement into tissues, protecting organs from edema formation and dysfunction, our aim was to see if MQ would cause a barrier dysfunction and to ascertain the mechanism. Using diffusional permeability to fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA) as a measure of barrier function, we found that 15 micro M MQ incubated with a bovine pulmonary artery EC (BPAEC) monolayer for 4 h produced a profound barrier failure ( approximately 7-fold increase in permeability) with a parallel fall in glutathione, almost to depletion. These two events were highly correlated. Immunofluorescent imaging showed formation of paracellular holes consistent with a loss or rearrangement of cell-cell and cell-matrix adhesion molecules. H(2)O(2) (100 micro M), a concentration which gave about the same increase in permeability as MQ, only slightly decreased GSH concentration. Antioxidants, such as catalase (CAT) and dimethylthiourea (DMTU), which were able to block the H(2)O(2)-induced changes, had no effect on the MQ-induced permeability and GSH changes, suggesting that H(2)O(2) was not involved in MQ-induced effects. MQ caused a severe EC cytotoxicity as judged by lactate dehydrogenase (LDH) leakage from the EC, whereas H(2)O(2) caused only a minor increase. Also, MQ profoundly inhibited the activities of glucose-6-phosphate dehydrogenase (G6PDH) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), key thiol enzymes involved in glutathione and ATP metabolism, whereas H(2)O(2) produced only a slight decrease in these activities. We conclude that the cytotoxicity of MQ and resulting barrier dysfunction correlate with GSH depletion and inactivation of key metabolic enzymes, compromising antioxidant defenses, rather than being consistent with H(2)O(2)-mediated oxidative stress.  相似文献   
10.
Although obesity is a risk factor for development of type 2 diabetes and chemical modification of proteins by advanced glycoxidation and lipoxidation end products is implicated in the development of diabetic complications, little is known about the chemical modification of proteins in adipocytes or adipose tissue. In this study we show that S-(2-succinyl)cysteine (2SC), the product of chemical modification of proteins by the Krebs cycle intermediate, fumarate, is significantly increased during maturation of 3T3-L1 fibroblasts to adipocytes. Fumarate concentration increased > or =5-fold during adipogenesis in medium containing 30 mm glucose, producing a > or =10-fold increase in 2SC-proteins in adipocytes compared with undifferentiated fibroblasts grown in the same high glucose medium. The elevated glucose concentration in the medium during adipocyte maturation correlated with the increase in 2SC, whereas the concentration of the advanced glycoxidation and lipoxidation end products, N(epsilon)-(carboxymethyl)lysine and N(epsilon)-(carboxyethyl)lysine, was unchanged under these conditions. Adipocyte proteins were separated by one- and two-dimensional electrophoresis and approximately 60 2SC-proteins were detected using an anti-2SC polyclonal antibody. Several of the prominent and well resolved proteins were identified by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry. These include cytoskeletal proteins, enzymes, heat shock and chaperone proteins, regulatory proteins, and a fatty acid-binding protein. We propose that the increase in fumarate and 2SC is the result of mitochondrial stress in the adipocyte during adipogenesis and that 2SC may be a useful biomarker of mitochondrial stress in obesity, insulin resistance, and diabetes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号