首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
生物科学   2篇
  2021年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.

Understanding how microclimate and vegetation are associated during secondary succession is of primary importance for plant conservation in the face of the increasing land cover modification. However, these patterns are still unstudied for many plant communities. This study aimed to evaluate the structure (species richness, Shannon's diversity index, Simpson´s dominance index, abundance of each species, average height of species, species cover (%), species composition, and indicator values) of a low thorn forest fragment and to analyze its relation with microclimate along a successional gradient. Four stages of succession were delimited by the analysis of Landsat images, in the state of Tamaulipas, northeast Mexico. Statistical models incorporated species richness, diversity indices, abundance, height, and cover, as variables for searching differences between stages, or to evaluate microclimate associations. A total of 70 species, 54 genera, and 27 families were determined. Height of tree layer was the most important variable for discrimination of the successional stages. Conserved areas differed floristically from other stages, associated mainly with the lowest values of wind speed originated by tree layer characteristics. A significant association between species and microclimate was found, being wind speed and relative humidity the most important variables. Some species, due to their high importance values and their patterns of association with microclimate, may be considered as key taxa for low thorn forest, which is a threatened semitropical community in northeast Mexico. Conserved and late successional areas account for climatic regulation of this plant community, and the importance of these forest patches may be considered when establishing biodiversity protection areas.

  相似文献   
2.
Taeniopoda is a genus of grasshoppers currently represented by 12 species distributed from southern USA to Panama, with most of them occurring along the transitional Nearctic–Neotropical region in central and southern Mexico. Despite being a small group of conspicuous, colourful species, the systematics of Taeniopoda has been largely neglected, including its phylogenetic affinity with the morphologically similar, monotypic genus Romalea. Here, we assessed the species limits in 11 of the species of Teniopoda based on two mitochondrial (mt) markers (COI, cyt b). Phylogenetic relationships were reconstructed adding two nuclear gene markers (28S, H3). A relaxed molecular clock analysis was performed based on the mt markers. We detected nuclear mt paralogues (numts) and the probable introgression of T. tamaulipensis mtDNA in specimens of T. eques from central Mexico. Between six and 14 species of Taeniopoda were delimited by the sequence-based approaches performed (COI divergence with thresholds of 1 and 2%; General Mixed Yule-Coalescent (GMYC) model). The GMYC and 1% threshold analyses with COI were more congruent with the currently recognized morphology-based taxonomy with 10 and 11 putative species, respectively. Four of these species were regarded as ‘stable’, since they were supported by at least one of the molecular analyses and by diagnostic morphological features. The species-based phylogeny recovered Taeniopoda as paraphyletic with respect to the monotypic genus Romalea. Three morphologically and geographically congruent major clades were recovered, two with species having a considerably elevated pronotal crest and one with its members having it less elevated. The origin and subsequent diversification of Taeniopoda were estimated to occur from the mid and late Miocene to Pliocene, respectively. The current species diversity in Taeniopoda was estimated to occur during the Pleistocene, which was probably influenced by the climatic oscillations that occurred during this period and the uplift of mountain ranges in Central America.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号