首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
自然科学   9篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2004年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
玻璃纤维/环氧树脂纺织复合材料水分散法制备   总被引:1,自引:0,他引:1  
本文初步探索了玻璃布增强环氧树脂复合材料的水分散法制备工艺,研究了玻璃布的浸渍工艺,并通过对材料力学性能的测试,探索了最佳模压成型工艺参数。结果表明:浸渍液浓度应较高,浸渍时间为40秒左右,浸渍次数为4~5次;复合材料制备较佳的工艺参数为模压压力12MPa、模压时间6min和模压温度190℃。  相似文献   
2.
《高分子化学》教学方法的探讨   总被引:3,自引:0,他引:3  
对高分子化学课程从相关资料的收集、教学方法和手段的选用,搞活课堂教学进行探讨,重点介绍了采用的方法,以求在知识传授的同时,努力提高学生的素质.  相似文献   
3.
结合我校高分子材料与工程专业在迎接本科教学工作水平评估期间的学生思想政治工作和专业教学实践,总结和分析了学生在思想认识上的特点与不足以及专业学习中的误区和困惑,提出了若干提高教育、教学质量的改进措施.  相似文献   
4.
粉煤灰/EPDM混炼胶增韧聚丙烯机理研究   总被引:2,自引:0,他引:2  
将粉煤灰与三元乙丙橡胶(EPDM)混炼后与聚丙烯树脂熔融共混进行增韧改性。根据共混聚丙烯体系的相态结构、结晶形态、试样断口形态等的变化,探讨了粉煤灰/EPDM混炼胶增韧PP的机理。结果表明加入粉煤灰/EPDM后聚丙烯球晶细化,加入的橡胶相材料容易发生屈服形变以及材料中多相界面导致的不均匀性使其在受力时更容易产生大量的银纹,多种因素共同起到了增韧效果。而且在受力时产生大量银纹,起到了增韧效果。  相似文献   
5.
采用γ-巯基丙基三甲氧基硅烷(KH590)、苯基异氰酸酯(PI)和十八烷基异氰酸酯(ODI)对超细羽绒粉体进行表面疏水化改性,制备了不同羽绒粉体含量的超细羽绒粉体/天然橡胶弹性体共混膜.分析了粉体含量及不同改性剂对天然橡胶共混膜吸水性能和拉伸力学性能的影响.结果表明:粉体的添加提高了共混膜的吸水率,与未改性粉体相比,PI和0DI对粉体改性可降低共混膜的吸水率,并提高了共混膜的断裂强度和断裂伸长率.共混膜的弹性模量随粉体含量的影响较大.  相似文献   
6.
简要介绍了纺织品数码喷墨印花技术的发展现状以及喷墨印花工艺对墨水的一般技术要求,着重对喷墨印花墨水作了详细的介绍,并将喷墨印花墨水分为墨水和油墨两类.分别描述了墨水和油墨的国内外研究现状以及存在的问题和趋势,尤其对高分子染料作为喷墨印花墨水和油墨的发展作了详细的探讨.纺织品数码喷墨印花墨水的研制以及其应用开发对我国染料和纺织行业的发展有着重要的意义.  相似文献   
7.
通过种子乳液聚合法合成含氟丙烯酸酯共聚乳液,探讨增溶剂β-环糊精(β-CD)用量、引发剂过硫酸铵(APS)用量、反应温度、含氟单体甲基丙烯酸十二氟庚酯(DFHMA)用量、乳化剂十二烷基硫酸钠(SDS)用量对单体转化率的影响。结果表明:β-CD的加入对单体最终转化率影响不大,且单体的转化速率随着β-CD用量的增加而降低;APS含量为0.6wt%时,所得共聚乳液转化率高,稳定性好;最佳反应温度为80℃;转化率随DFHMA含量的增加而逐渐降低。  相似文献   
8.
以丙纶长纤为经纱,剑麻连续长纤为纬纱,织成剑麻/PP平纹机织物.采用不同浓度的氢氧化钠对织物进行碱处理,将处理后的织物与聚丙烯薄板模压成型,制备出剑麻连续长纤增强聚丙烯复合材料.采用SEM对碱处理前后的剑麻纤维形貌进行分析,讨论不同碱处理浓度对复合材料力学性能的影响.结果表明:碱处理对剑麻连续长纤的表面具有刻蚀作用,以及对剑麻连续长纤增强聚丙烯复合材料的动态热机械性能、拉伸性能、弯曲性能均有一定的影响.  相似文献   
9.
利用直接酯化法合成了一系列不同配比的PTT-PBT(简称PTBT)共聚酯.采用核磁共振(NMR)和固体13C-NMR研究了共聚酯的化学组成、序列结构和结晶性能.1H-NMR和13C-NMR表明:PTBT为无规嵌段聚合物,而且共聚酯链段中PBT链段的实际含量都要小于投料比,可能归因于生成四氢呋喃的副反应消耗了部分丁二醇.共聚酯中各链段的序列长度与其含量成正比,即含量高的组份具有更长的平均序列长度,但PTT序列长度较短,PTT链段比PBT链段更倾向于发生交替反应.固体13C-NMR表明:PTBT共聚酯结晶主要是富集相对应的链段参与完成.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号