首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   275篇
  免费   14篇
工业技术   289篇
  2023年   2篇
  2022年   6篇
  2021年   3篇
  2020年   13篇
  2019年   5篇
  2018年   13篇
  2017年   11篇
  2016年   8篇
  2015年   7篇
  2014年   16篇
  2013年   30篇
  2012年   14篇
  2011年   23篇
  2010年   18篇
  2009年   15篇
  2008年   10篇
  2007年   10篇
  2006年   5篇
  2005年   11篇
  2004年   8篇
  2003年   7篇
  2002年   2篇
  2001年   6篇
  2000年   5篇
  1999年   2篇
  1998年   8篇
  1997年   8篇
  1996年   4篇
  1994年   3篇
  1993年   3篇
  1991年   1篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1983年   1篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
排序方式: 共有289条查询结果,搜索用时 15 毫秒
1.
Iranian Polymer Journal - Surface of Al2O3 nanoparticles was modified with a silane coupling agent, and aramid fiber-reinforced epoxy nanocomposites were produced using these particles. Three...  相似文献   
2.
In this study, the effect of pendant pyrene on the optical and electronic properties of poly(2,5‐dithienylpyrrole)s was studied. For this purpose a new pyrene coupled 2,5‐dithienylpyrrole derivative (SNS‐pyrene) was synthesized through click reaction. SNS‐pyrene was electrochemically polymerized and its electrochemical and optical properties were investigated by electrochemical and optical techniques. The polymer had a band gap of 3.36 eV and displayed light green to blue color variation upon oxidation in less than 2.48 s. Additionally, electrochemical copolymerization of SNS‐pyrene with 3,4‐ethylenedioxythiophene was achieved whilst a detailed investigation was performed on the effect of electrochemical polymerization conditions on the optoelectronic properties of the copolymers. Studies revealed that the copolymers exhibit multichromic reversible redox behavior with lower band gaps and shorter switching times than their parent polymer, P(SNS‐pyrene) © 2014 Society of Chemical Industry.  相似文献   
3.
As the surface properties of the drying materials are very important not only for the drying rate but also for the quality change during drying, the effects of surface concentration on the drying behavior of liquid foods (sugar solutions) were investigated by isothermal drying experiments and by numerical calculation experiments. The isothermal drying experiments with gelled sugar solution systems (sucrose and maltodextrin) were carried out at various relative humidity (RH) values (RH = 0 to 84%). Separate experiments were carried out for determination of the desorption isotherms.

The isothermal drying curves of sugar solutions at RH = 0 to 51% were very similar. Numerical simulations also showed that the drying curves of these sugars at the surface concentration = 0 and 0.1 are almost the same, although the concentration distributions are different.

When a small amount of gelatin was added to sugar solutions, the drying rate decreased remarkably as the gelatin might form a thin film (skin) near the surface, and consequently the retention of ethanol increased.  相似文献   
4.
A method for the time suboptimal control of an industrial manipulator from an initial position and orientation to a final position and orientation as it moves along a specified path is proposed. Nonlinear system equations that describe the manipulator motion are linearized at each time step along the path. A method which gives the control inputs (joint angular velocities) for time suboptimal control of the manipulator is developed. In the formulation, joint angular velocity and acceleration limitations are also taken into consideration. A six degree of freedom elbow type manipulator is used in numerical examples to verify the method developed.  相似文献   
5.
In this correspondence, we propose an algorithm for computing the distance spectrum of a space-time trellis code achieving maximal diversity gain in quasi-static fading channels. We further present a state reduction technique for trellis codes that can reduce the complexity of the distance spectrum computation. We provide numerical results supporting the empirical evidence that a truncated union bound obtained from the distance spectrum provides an accurate characterization of the relative performance ordering of different space-time trellis codes and, therefore, it offers a tool for better space-time trellis code design.  相似文献   
6.
There is increasing evidence for rapid steroid action on electrolyte transport in human mononuclear leukocytes (HML). In HML, aldosterone stimulates the Na+/H+ antiporter within a few minutes. Because a variety of hormones and growth factors activate the Na+/H+ antiporter via protein kinase C and inositol phospholipids, a possible involvement of inositol-1,4,5-trisphosphate (IP3) in the rapid effects of aldosterone in HML was investigated. The stimulation of IP3 generation was started by the addition of aldosterone, concanavalin A, or other steroids. A significant increase in IP3 levels by aldosterone (1 nmol/L, P < 0.05) was found after 1 min, similar to that found after concanavalin A (25 micrograms/mL). Aldosterone caused a concentration-dependent elevation of IP3 levels, with an apparent EC50 of approximately 0.1 nmol/L. Fludrocortisone stimulated IP3 generation at similar concentrations, whereas a weaker IP3 stimulation by glucocorticoids (hydrocortisone, dexamethasone) occurred at micromolar concentrations only. Canrenone, a potent inhibitor of classical aldosterone action, was not effective up to a concentration of 100 nmol/L. These findings show kinetic and pharmacological similarities with both the functional data on Na+/H+ antiport stimulation by aldosterone and the studies of 125I-aldosterone binding to plasma membranes of HML. Thus, these data are the first to indicate an involvement of the phosphoinositide pathway in the rapid membrane effects of aldosterone.  相似文献   
7.
Effects of thermoacoustic wave motion on the developing natural convection process in a compressible gas-filled square enclosure were investigated numerically. In the cases considered, the left wall temperature is raised rapidly (impulsively or gradually) while the right wall is held at a specified temperature. The top and the bottom walls of the enclosure considered are thermally insulated. The numerical solutions of the full Navier-Stokes equations were obtained by employing a highly accurate flux-corrected transport algorithm for the convection terms and by a central differencing scheme for the viscous and diffusive terms. The strength of the pressure waves associated with the thermoacoustic effect and resulting flow patterns are found to be strongly correlated to the rapidity of the wall heating process. Fluid thermal diffusivity was found to affect the strength of the thermoacoustic waves and the resulting interaction with the buoyancy-induced flow.  相似文献   
8.
For the last four decades Unmanned Air Vehicles (UAVs) have been extensively used for military operations that include tracking, surveillance, active engagement with weapons and airborne data acquisition. UAVs are also in demand commercially due to their advantages in comparison to manned vehicles. These advantages include lower manufacturing and operating costs, flexibility in configuration depending on customer request and not risking the pilot on demanding missions. Even though civilian UAVs currently constitute 3 % of the UAV market, it is estimated that their numbers will reach up to 10 % of the UAV market within the next 5 years. Most of the civilian UAV applications require UAVs that are capable of doing a wide range of different and complementary operations within a composite mission. These operations include taking off and landing from limited runway space, while traversing the operation region in considerable cruise speed for mobile tracking applications. This is in addition to being able traverse in low cruise speeds or being able to hover for stationary measurement and tracking. All of these complementary and but different operational capabilities point to a hybrid unmanned vehicle concept, namely the Vertical Take-Off and Landing (VTOL) UAVs. In addition, the desired UAV system needs to be cost-efficient while providing easy payload conversion for different civilian applications. In this paper, we review the preliminary design process of such a capable civilian UAV system, namely the TURAC VTOL UAV. TURAC UAV is aimed to have both vertical take-off and landing and Conventional Take-off and Landing (CTOL) capability. TURAC interchangeable payload pod and detachable wing (with potential different size variants) provides capability to perform different mission types, including long endurance and high cruise speed operations. In addition, the TURAC concept is to have two different variants. The TURAC A variant is an eco-friendly and low-noise fully electrical platform which includes 2 tilt electric motors in the front, and a fixed electric motor and ducted fan in the rear, where as the TURAC B variant is envisioned to use high energy density fuel cells for extended hovering time. In this paper, we provide the TURAC UAV’s iterative design and trade-off studies which also include detailed aerodynamic and structural configuration analysis. For the aerodynamic analysis, an in-house software including graphical user interface has been developed to calculate the aerodynamic forces and moments by using the Vortex Lattice Method (VLM). Computational Fluid Dynamics (CFD) studies are performed to determine the aerodynamic effects for various configurations For structural analysis, a Finite Element Model (FEM) of the TURAC has been prepared and its modal analysis is carried out. Maximum displacements and maximal principal stresses are calculated and used for streamlining a weight efficient fuselage design. Prototypes have been built to show success of the design at both hover and forward flight regime. In this paper, we also provide the flight management and autopilot architecture of the TURAC. The testing of the controller performance has been initiated with the prototype of TURAC. Current work focuses on the building of the full fight test prototype of the TURAC UAV and aerodynamic modeling of the transition flight.  相似文献   
9.
Conventional solid-state power amplifier (SSPA) design approach isolates radio frequency (RF) design from communication theory. In this paper, a unified SSPA design approach is proposed, which optimizes SSPA parameters (bias voltage and input RF signal power) to minimize total DC power consumption while satisfying received SNR constraint specified by the link budget. The effect of SSPA nonlinearity is quantified by the error vector magnitude measured at its output and the corresponding received SNR degradation is analyzed. Using the quantitative metrics for received SNR, it is possible to evaluate highly nonlinear SSPA classes such as Class-B or deep-Class AB, which are normally not considered in conventional SSPA design approach to be used in satellite communication applications.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号