首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7200篇
  免费   526篇
  国内免费   26篇
工业技术   7752篇
  2024年   2篇
  2023年   88篇
  2022年   43篇
  2021年   203篇
  2020年   171篇
  2019年   182篇
  2018年   236篇
  2017年   239篇
  2016年   265篇
  2015年   208篇
  2014年   340篇
  2013年   448篇
  2012年   548篇
  2011年   620篇
  2010年   452篇
  2009年   500篇
  2008年   445篇
  2007年   355篇
  2006年   290篇
  2005年   265篇
  2004年   227篇
  2003年   191篇
  2002年   214篇
  2001年   151篇
  2000年   158篇
  1999年   130篇
  1998年   159篇
  1997年   133篇
  1996年   96篇
  1995年   78篇
  1994年   55篇
  1993年   49篇
  1992年   31篇
  1991年   27篇
  1990年   26篇
  1989年   24篇
  1988年   18篇
  1987年   15篇
  1986年   12篇
  1985年   8篇
  1984年   3篇
  1983年   8篇
  1982年   7篇
  1981年   5篇
  1979年   3篇
  1978年   2篇
  1977年   7篇
  1976年   8篇
  1975年   3篇
  1967年   1篇
排序方式: 共有7752条查询结果,搜索用时 734 毫秒
1.
2.
3.
This study investigates the impact of lighting colors on subjective judgments of fabric: in particular, whether the influence of lighting varies depending on fabric types and color combinations. We conducted two visual assessments. In Study 1 (N = 44), eight illuminants and six types of fabric were presented as cloth stimuli. Derived from the literature review, four sets of adjectives (humble-luxurious, cool-warm, old-new, and not preferred-preferred) were used as metrics. In Study 2 (N = 41), five sets of fabric color combination swatches were assessed under lighting conditions that were identical to those of Study 1. Three bipolar scales (ordinary-characterful, classic-modern, and soft-rigid), were employed from factor analysis along with three unipolar scales (luxurious, preferred, harmonious with lighting). The results showed that hue characteristics of lighting and cloth types influenced participants' perceptions of the fabric. Overall, white lighting with 4000 K was the most preferred and luxurious lighting across various types of clothes, while a pinkish white with 4700 K (duv = −0.0127) was the best matched in every color combination. In addition, there were interaction effects between lighting colors, clothes types, and fabric color combinations with regard to each of the perceptual qualities. This study provides empirical evidence for optimally match lighting colors with fabric in the presentation of fabric goods.  相似文献   
4.
5.
Evaluation of kinetic distribution and behaviors of nanoparticles in vivo provides crucial clues into their roles in living organisms. Extracellular vesicles are evolutionary conserved nanoparticles, known to play important biological functions in intercellular, inter‐species, and inter‐kingdom communication. In this study, the first kinetic analysis of the biodistribution of outer membrane vesicles (OMVs)—bacterial extracellular vesicles—with immune‐modulatory functions is performed. OMVs, injected intraperitoneally, spread to the whole mouse body and accumulate in the liver, lung, spleen, and kidney within 3 h of administration. As an early systemic inflammation response, increased levels of TNF‐α and IL‐6 are observed in serum and bronchoalveolar lavage fluid. In addition, the number of leukocytes and platelets in the blood is decreased. OMVs and cytokine concentrations, as well as body temperature are gradually decreased 6 h after OMV injection, in concomitance with the formation of eye exudates, and of an increase in ICAM‐1 levels in the lung. Following OMV elimination, most of the inflammatory signs are reverted, 12 h post‐injection. However, leukocytes in bronchoalveolar lavage fluid are increased as a late reaction. Taken together, these results suggest that OMVs are effective mediators of long distance communication in vivo.  相似文献   
6.
The mammalian cell cycle is important in controlling normal cell proliferation and the development of various diseases. Cell cycle checkpoints are well regulated by both activators and inhibitors to avoid cell growth disorder and cancerogenesis. Cyclin dependent kinase 20 (CDK20) and p21Cip1/Waf1 are widely recognized as key regulators of cell cycle checkpoints controlling cell proliferation/growth and involving in developing multiple cancers. Emerging evidence demonstrates that these two cell cycle regulators also play an essential role in promoting cell survival independent of the cell cycle, particularly in those cells with a limited capability of proliferation, such as cardiomyocytes. These findings bring new insights into understanding cytoprotection in these tissues. Here, we summarize the new progress of the studies on these two molecules in regulating cell cycle/growth, and their new roles in cell survival by inhibiting various cell death mechanisms. We also outline their potential implications in cancerogenesis and protection in heart diseases. This information renews the knowledge in molecular natures and cellular functions of these regulators, leading to a better understanding of the pathogenesis of the associated diseases and the discovery of new therapeutic strategies.  相似文献   
7.
8.
9.
10.
Recent studies have shown that lotus (Nelumbo nucifera) leaf has various pharmacological effects. However, there have been no scientific investigations into these leaves as a fermented crude liquid. This study compared the in vitro antioxidant capacity of lotus leaf‐fermented broth (LLFB) with that of 57° Brix sugar broth (SB) as a control over a period of 6 months based on 1,1‐diphenyl‐2‐picrylhydrazyl radical scavenging activity, ferric ion reducing power, superoxide dismutase‐like activity, tyrosinase inhibition and nitrite scavenging activity. The dominant species during fermentation process were Leuconostoc lactis and Saccharomyces cerevisiae for LLFB. A total of thirty‐six metabolites such as alkaloids, fatty acids, organic acids, phenolics, sugar and sugar derivatives, ethyl esters and monoterpenoids differed between SB and LLFB using gas chromatography–mass spectrometry. Meanwhile, nine volatile compounds in LLFB contributed pleasant, slightly sweetish and fruity odour of condiment and sensory evaluation score of 4.06 ± 1.52 in the proportion of 1:9 LLFB/water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号