首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
工业技术   4篇
  2022年   1篇
  2012年   1篇
  2009年   1篇
  2000年   1篇
排序方式: 共有4条查询结果,搜索用时 343 毫秒
1
1.
Microsystem Technologies - Micro-mechanical systems (MEMS) based piezoresistive pressure sensors have significant importance in several pressure sensor devices in real world, i.e., aviation, IoT...  相似文献   
2.
Parallelizing compilers have traditionally focussed mainly on parallelizing loops. This paper presents a new framework for automatically parallelizing recursive procedures that typically appear in divide-and-conquer algorithms. We present compile-time analysis, using powerful, symbolic array section analysis, to detect the independence of multiple recursive calls in a procedure. This allows exploitation of a scalable form of nested parallelism, where each parallel task can further spawn off parallel work in subsequent recursive calls. We describe a runtime system which efficiently supports this kind of nested parallelism without unnecessarily blocking tasks. We have implemented this framework in a parallelizing compiler, which is able to automatically parallelize programs like quicksort and mergesort, written in C. For cases where even the advanced compile-time analysis we describe is not able to prove the independence of procedure calls, we propose novel techniques for speculative runtime parallelization, which are more efficient and powerful in this context than analogous techniques proposed previously for speculatively parallelizing loops. Our experimental results on an IBM G30 SMP machine show good speedups obtained by following our approach.  相似文献   
3.
Large multi-dimensionality of high-throughput datasets pertaining to cell signalling and gene regulation renders it difficult to extract mechanisms underlying the complex kinetics involving various biochemical compounds (e.g. proteins and lipids). Data-driven models often circumvent this difficulty by using pair correlations of the protein expression levels to produce a small number (fewer than 10) of principal components, each a linear combination of the concentrations, to successfully model how cells respond to different stimuli. However, it is not understood if this reduction is specific to a particular biological system or to nature of the stimuli used in these experiments. We study temporal changes in pair correlations, described by the covariance matrix, between concentrations of different molecular species that evolve following deterministic mass-action kinetics in large biologically relevant reaction networks and show that this dramatic reduction of dimensions (from hundreds to less than five) arises from the strong correlations between different species at any time and is insensitive to the form of the nonlinear interactions, network architecture, and to a wide range of values of rate constants and concentrations. We relate temporal changes in the eigenvalue spectrum of the covariance matrix to low-dimensional, local changes in directions of the system trajectory embedded in much larger dimensions using elementary differential geometry. We illustrate how to extract biologically relevant insights such as identifying significant timescales and groups of correlated chemical species from our analysis. Our work provides for the first time, to our knowledge, a theoretical underpinning for the successful experimental analysis and points to a way to extract mechanisms from large-scale high-throughput datasets.  相似文献   
4.
Thermally and hydrodynamically fully developed combined pressure-driven and electroosmotic flow through a channel has been simulated for isoflux wall boundary conditions. Effects of asymmetries in wall zeta potential and heat flux have been considered and closed form expressions have been obtained for transverse distribution of electric potential, velocity and temperature. The results indicate that both flow and heat transfer characteristics are significantly affected by the asymmetries in wall boundary conditions for both purely electroosmotic and combined pressure-driven and electroosmotic flow. These findings have important implications for flow and heat transfer control in microfluidics through alteration of surface conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号