首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5433篇
  免费   360篇
  国内免费   6篇
工业技术   5799篇
  2023年   81篇
  2022年   95篇
  2021年   337篇
  2020年   167篇
  2019年   182篇
  2018年   210篇
  2017年   167篇
  2016年   192篇
  2015年   172篇
  2014年   182篇
  2013年   351篇
  2012年   315篇
  2011年   375篇
  2010年   254篇
  2009年   249篇
  2008年   266篇
  2007年   253篇
  2006年   192篇
  2005年   167篇
  2004年   148篇
  2003年   118篇
  2002年   110篇
  2001年   69篇
  2000年   75篇
  1999年   65篇
  1998年   94篇
  1997年   75篇
  1996年   64篇
  1995年   61篇
  1994年   49篇
  1993年   48篇
  1992年   43篇
  1991年   25篇
  1990年   36篇
  1989年   32篇
  1988年   32篇
  1987年   30篇
  1986年   27篇
  1985年   28篇
  1984年   26篇
  1983年   35篇
  1982年   24篇
  1981年   25篇
  1979年   15篇
  1978年   26篇
  1977年   27篇
  1976年   26篇
  1975年   20篇
  1974年   18篇
  1973年   19篇
排序方式: 共有5799条查询结果,搜索用时 234 毫秒
1.
2.
3.
Vertical arrays of nanostructures (NSs) are emerging as promising platforms for probing and manipulating live mammalian cells. The broad range of applications requires different types of interfaces, but cell settling on NS arrays is not yet fully controlled and understood. Cells are both seen to deform completely into NS arrays and to stay suspended like tiny fakirs, which have hitherto been explained with differences in NS spacing or density. Here, a better understanding of this phenomenon is provided by using a model that takes into account the extreme membrane deformation needed for a cell to settle into a NS array. It is shown that, in addition to the NS density, cell settling depends strongly on the dimensions of the single NS, and that the settling can be predicted for a given NS array geometry. The predictive power of the model is confirmed by experiments and good agreement with cases from the literature. Furthermore, the influence of cell‐related parameters is evaluated theoretically and a generic method of tuning cell settling through surface coating is demonstrated experimentally. These findings allow a more rational design of NS arrays for the numerous exciting biological applications where the mode of cell settling is crucial.  相似文献   
4.
In this work, the sintering behaviour of fluorapatite (FAp)–silicate composites prepared by mixing variable amounts of natural quartz (2.5 wt% to 20 wt%) and FAp was studied. The composites were pressureless sintered in air at temperatures from 1000 °C to 1350 °C. The effects of temperatures on the densification, phase formation, chemical bonding and Vickers hardness of the composites were evaluated. All the samples exhibited mixed phase, comprising FAp and francolite as the major constituents along with some minor phases of cristobalite, wollastonite, dicalcium silicate and/or whitlockite dependent on the quartz content and sintering temperature. The composite containing 2.5 wt% quartz exhibited the best sintering properties. The highest bulk density of 3 g/cm3 and a Vickers hardness of >4.2 GPa were obtained for the 2.5 wt% quartz–FAp composite when sintered at 1100 °C. The addition of quartz was found to alter the microstructure of the composites, where it exhibited a rod-like morphology when sintered at 1000 °C and a regular rounded grain structure when sintered at 1350 °C. A wetted grain surface was observed for composites containing high quartz content and was believed to be associated with a transient liquid phase sintering.  相似文献   
5.
6.
7.
Extracellular vesicles (EVs) are a heterogeneous group of cell-derived submicron vesicles released under physiological or pathological conditions. EVs mediate the cellular crosstalk, thus contributing to defining the tumor microenvironment, including in epithelial ovarian cancer (EOC). The available literature investigating the role of EVs in EOC has been reviewed following PRISMA guidelines, focusing on the role of EVs in early disease diagnosis, metastatic spread, and the development of chemoresistance in EOC. Data were identified from searches of Medline, Current Contents, PubMed, and from references in relevant articles from 2010 to 1 April 2020. The research yielded 194 results. Of these, a total of 36 papers, 9 reviews, and 27 original types of research were retained and analyzed. The literature findings demonstrate that a panel of EV-derived circulating miRNAs may be useful for early diagnosis of EOC. Furthermore, it appears clear that EVs are involved in mediating two crucial processes for metastatic and chemoresistance development: the epithelial–mesenchymal transition, and tumor escape from the immune system response. Further studies, more focused on in vivo evidence, are urgently needed to clarify the role of EV assessment in the clinical management of EOC patients.  相似文献   
8.
A low temperature co-fired ceramic (LTCC) material system has been used to develop a protype field emission cathode structure for use in an experimental magnetron oscillator. The structure is designed for used with 30 gated field emission array (GFEA) die electrically connected through silver metal traces and electrical vias. To approximate a cylinder, the cathode structure (48 mm long and 13.7 mm in diameter) is comprised of 10 faceted plates which cover the GFEA dies. Slits in the facet plates allow electron injection. The GFEA die (3 mm × 8 mm) are placed in axial columns of 3 and spaced azimuthally around a cylindrical support structure in a staggered configuration resulting in 10 azimuthal locations. LTCC manufacturing techniques were developed in order to fabricate the newly designed cathode with seven layers wrapped to form the cylinder with electrical traces and vias. Two different cathode wrapping techniques and two different via filling techniques were studied and compared. Two different facet plate manufacturing techniques were studied. Finally, four different support stand configurations for firing the cylindrical structure were also compared with a square post stand having the best circularity and linearity measurements of the fired structure.  相似文献   
9.
10.
Class I hydrophobin Vmh2, a peculiar surface active and versatile fungal protein, is known to self‐assemble into chemically stable amphiphilic films, to be able to change wettability of surfaces, and to strongly adsorb other proteins. Herein, a fast, highly homogeneous and efficient glass functionalization by spontaneous self‐assembling of Vmh2 at liquid–solid interfaces is achieved (in 2 min). The Vmh2‐coated glass slides are proven to immobilize not only proteins but also nanomaterials such as graphene oxide (GO) and quantum dots (QDs). As models, bovine serum albumin labeled with Alexa 555 fluorophore, anti‐immunoglobulin G antibodies, and cadmium telluride QDs are patterned in a microarray fashion in order to demonstrate functionality, reproducibility, and versatility of the proposed substrate. Additionally, a GO layer is effectively and homogeneously self‐assembled onto the studied functionalized surface. This approach offers a quick and simple alternative to immobilize nanomaterials and proteins, which is appealing for new bioanalytical and nanobioenabled applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号