首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   9篇
  国内免费   2篇
工业技术   192篇
  2023年   5篇
  2022年   10篇
  2021年   19篇
  2020年   5篇
  2019年   8篇
  2018年   14篇
  2017年   15篇
  2016年   12篇
  2015年   6篇
  2014年   2篇
  2013年   20篇
  2012年   9篇
  2011年   11篇
  2010年   6篇
  2009年   9篇
  2008年   11篇
  2007年   6篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2001年   2篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1993年   1篇
  1989年   1篇
  1976年   1篇
排序方式: 共有192条查询结果,搜索用时 421 毫秒
1.
2.
A growing trend within nanomedicine has been the fabrication of self‐delivering supramolecular nanomedicines containing a high and fixed drug content ensuring eco‐friendly conditions. This study reports on green synthesis of silica nanoparticles (Si‐NPs) using Azadirachta indica leaves extract as an effective chelating agent. X‐ray diffraction analysis and Fourier transform‐infra‐red spectroscopic examination were studied. Scanning electron microscopy analysis revealed that the average size of particles formed via plant extract as reducing agent without any surfactant is in the range of 100–170 nm while addition of cetyltrimethyl ammonium bromide were more uniform with 200 nm in size. Streptomycin as model drug was successfully loaded to green synthesised Si‐NPs, sustain release of the drug from this conjugate unit were examined. Prolong release pattern of the adsorbed drug ensure that Si‐NPs have great potential in nano‐drug delivery keeping the environment preferably biocompatible, future cytotoxic studies in this connection is helpful in achieving safe mode for nano‐drug delivery.Inspec keywords: silicon compounds, nanofabrication, nanomedicine, drug delivery systems, nanoparticles, X‐ray diffraction, Fourier transform infrared spectra, scanning electron microscopyOther keywords: nanosilica, streptomycin, nanoscale drug delivery, nanomedicine, silica nanoparticles, Azadirachta indica leaves extract, X‐ray diffraction analysis, Fourier transform‐infrared spectroscopy, scanning electron microscopy, cetyltrimethyl ammonium bromide, SiO2   相似文献   
3.
To grapple with multidrug resistant bacterial infections, implementations of antibacterial nanomedicines have gained prime attention of the researchers across the globe. Nowadays, zinc oxide (ZnO) at nano‐scale has emerged as a promising antibacterial therapeutic agent. Keeping this in view, ZnO nanostructures (ZnO‐NS) have been synthesised through reduction by P. aphylla aqueous extract without the utilisation of any acid or base. Structural examinations via scanning electron microscopy (SEM) and X‐ray diffraction have revealed pure phase morphology with highly homogenised average particle size of 18 nm. SEM findings were further supplemented by transmission electron microscopy examinations. The characteristic Zn–O peak has been observed around 363 nm using ultra‐violet–visible spectroscopy. Fourier‐transform infrared spectroscopy examination has also confirmed the formation of ZnO‐NS through detection of Zn–O bond vibration frequencies. To check the superior antibacterial activity of ZnO‐NS, the authors'' team has performed disc diffusion assay and colony forming unit testing against multidrug resistant E. coli, S. marcescens and E. cloacae. Furthermore, protein kinase inhibition assay and cytotoxicity examinations have revealed that green fabricated ZnO‐NS are non‐hazardous, economical, environmental friendly and possess tremendous potential to treat lethal infections caused by multidrug resistant pathogens.Inspec keywords: nanomedicine, zinc compounds, II‐VI semiconductors, wide band gap semiconductors, nanoparticles, scanning electron microscopy, X‐ray diffraction, antibacterial activity, transmission electron microscopy, particle size, Fourier transform infrared spectra, ultraviolet spectra, visible spectra, enzymes, biochemistry, molecular biophysics, microorganisms, drugs, toxicology, bonds (chemical), semiconductor growth, nanofabrication, vibrational modesOther keywords: green synthesised zinc oxide nanostructures, Periploca aphylla extract, antibacterial potential, multidrug resistant pathogens, multidrug resistant bacterial infections, antibacterial nanomedicines, P. aphylla aqueous extract, structural examinations, scanning electron microscopy, X‐ray diffraction, pure phase morphology, homogenised average particle size, SEM, transmission electron microscopy, Fourier‐transform infrared spectroscopy, bond vibration frequency, antibacterial activity, disc diffusion assay, colony forming unit testing, S. marcescens, E. cloacae, E. coli, ultraviolet‐visible spectroscopy, protein kinase inhibition assay, cytotoxicity, lethal infections, ZnO  相似文献   
4.
The Cu2Zn1?xCdxSnS4 quinternary alloy nanostructures with different Cd contents were grown using spin coating technique on porous silicon (63.93 %) substrate. The structural properties of Cu2Zn1?xCdxSnS4/PS were investigated by X-ray diffraction and field emission-scanning electron microscope (FE-SEM). The optical properties studied through photoluminescence technique, indicated that the band gap is shifted as Cd content increases from 1.84 eV at x = 0 to 1.76 eV at x = 1. The electrical characterization of the Ag/n-PS/Cu2Zn1?xCdxSnS4/Ag diode through current to voltage (I–V) characterization shows the highest photo-response of (value if any) at Cu2Zn0.4Cd0.6SnS4 composition.  相似文献   
5.
Intermediate host snails of schistosomiasis were surveyed in this study to determine their abundance and distribution in the lake and land aquatic habitats of Lake Victoria basin of Kenya. Several sites were sampled at eight locations, both in the lake and on the land. The habitat and/or vegetation type (i.e. open water, hippo grass, hyacinth, ambatch trees, other vegetation, stream, swamp, pond, dam) of the sampled aquatic sites within the locations were also differentiated, water physicochemical parameters were determined, and the abundance of different species or taxa of phytoplankton and zooplankton were enumerated and correlated with the abundance of schistosomiasis snails in the sites. The results indicated significantly more Biomphalaria sudanica snails than Bulinus africanus snails in different physical habitats on land (Student's t‐test, P < 0.05), as well as in different locations on land (Student's t‐test, P = 0.026). Regression analyses revealed that several physicochemical parameters, including dissolved oxygen (R2 = ?0.659; n = 8; P = 0.014), pH (R2 = 0.728; n = 8; P = 0.007) and turbulence (R2 = ?0.616; n = 8; P = 0.02), were predictive of Biomphalaria spp. abundance, while pH (R= 0.610; n = 8; P = 0.02) and turbulence (R= ?0.578; n = 8; P = 0.028) were predictive of Bulinus spp. abundance in different locations in the lake. Cyanobacteria (R= 0.638; n = 8; P = 0.02) and chlorophyceae (R2 = ?0.50; n = 8; P = 0.05) were shown to be predictive of both Biomphalaria spp. and Bulinus spp. abundance in different locations in the lake. Zooplankton abundance varied significantly between different locations in the lake (One‐way anova , P < 0.001). Bosmina spp. were found to be predictive of both Biomphalaria spp. (R= ?0.627; n = 8; P = 0.01) and Bulinus spp. (R= ?0.50; n = 8; P = 0.05) in different locations in the lake. The results from this study will help inform policy regarding control measures for schistosomias and intermediate snail hosts in Lake Victoria waters, as well as in adjacent terrestrial aquatic habitats and even beyond.  相似文献   
6.
The barriers for the encapsulation and decapsulation of hydrogen ions (cationic hydrogen and hydride), atom, and molecule through silicon carbide nanotube are thoroughly studied. DFT method is selected to measure the kinetic barriers for the passage of hydrogen atom, ions and molecule through nanotube via scanning potential energy surface. The kinetic barriers for the passage (encapsulation and decapsulation) of hydrogen are very important to understand the mechanism of hydrogen storage and release. The barriers for the permeation of H, H+ and H? across SiC nanosheet are lower compared to hydrogen molecule (H2). The exohedral and endohedral adsorption of hydrogen ions (cation and anion), atom and exohedral hydrogen molecule on silicon carbide are exothermic in nature. Whereas the encapsulation of hydrogen molecule in silicon carbide is endothermic. Electronic properties are analyzed through measurement of energy gap between highest occupied and lowest unoccupied molecular orbitals gap (GH-L) and the density of state (DOS) spectra. The GH-L analysis reveals that endohedral complexes have more pronounced effect on electronic properties compared to exohedral complexes. The SiC nanotube has highly favorable properties for storage and release of hydrogen ions, and atom.  相似文献   
7.
Surgical robots are increasingly being used in operation theaters involving normal or laparoscopic surgeries. The working of these surgical robots is highly dependent on their control algorithms, which require very rigorous analysis to ensure their correct functionality due to the safety-critical nature of surgeries. Traditionally, safety of control algorithms is ensured by simulations, but they provide incomplete and approximate analysis results due to their inherent sampling-based nature. We propose to use probabilistic model checking, which is a formal verification method, for quantitative analysis, to verify the control algorithms of surgical robots in this paper. As an illustrative example, the paper provides a formal analysis of a virtual fixture control algorithm, implemented in a neuro-surgical robot, using the PRISM model checker. In particular, we provide a formal discrete-time Markov chain-based model of the given control algorithm and its environment. This formal model is then analyzed for multiple virtual fixtures, like cubic, hexagonal and irregular shapes. This verification allowed us to discover new insights about the considered algorithm that allow us to design safer control algorithms.  相似文献   
8.
9.
In this work, multi‐walled carbon nanotubes (MWCNT) and poly(methyl methacrylate) (PMMA) pellets were compounded via corotating twin‐screw extruder. The produced MWCNT/PMMA nanocomposite pellets were injection molded. The effect of MWCNT concentration, injection melt temperature and holding pressure on mechanical properties of the nanocomposites were investigated. To examine the mechanical properties of the MWCNT/PMMA nanocomposites, tensile test, charpy impact test, and Rockwell hardness are considered as the outputs. Design of experiments (DoE) is done by full factorial method. The morphology of the nanocomposites was performed using scanning electron microscopy (SEM). The results revealed when MWCNT concentration are increased from 0 to 1.5 wt %, tensile strength and elongation at break were reduced about 30 and 40%, respectively, but a slight increase in hardness was observed. In addition, highest impact strength belongs to the nanocomposite with 1 wt % MWCNT. This study also shows that processing condition significantly influence on mechanical behavior of the injection molded nanocomposite. In maximum holding pressure (100 bar), the nanocomposites show highest tensile strength, elongation, impact strength and hardness. According to findings, melt temperature has a trifle effect on elongation, but it has a remarkable influence on tensile strength. In the case of impact strength, higher melt temperature is favorable. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43738.  相似文献   
10.
This pilot study evaluated the effects of bacterial augmentation on the efficiency of floating treatment wetlands (FTWs) to remediate textile wastewater. Two wetland plants, Phragmites australis and Typha domingensis, were used to develop FTWs, which were then augmented with a bacterial consortium of three strains (Acinetobacter junii, Pseudomonas indoloxydans, and Rhodococcus sp.). Results showed that both plant species removed colour, organic matter, toxicity, and heavy metals from textile wastewater and their removal efficiency was further enhanced by augmentation with bacteria. The maximum removal efficiencies of colour, COD and BOD after an 8‐day period were 97, 87 and 92%, respectively, by FTWs carrying P. australis inoculated with the bacterial consortium. Furthermore, the same combination showed 87–99% reduction of heavy metals in the textile wastewater as well. These results indicate that FTWs can be used for the treatment of textile effluent and their working efficiency can be improved by plant‐bacterial synergism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号