首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   2篇
  国内免费   1篇
工业技术   62篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   1篇
  2012年   1篇
  2011年   7篇
  2010年   4篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   6篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
  1993年   1篇
  1990年   2篇
  1988年   1篇
  1976年   1篇
排序方式: 共有62条查询结果,搜索用时 140 毫秒
1.
Statistical quality control (SQC) is an important field where both theory of probability and theory of fuzzy sets may be used. In the paper we give a short overview of basic problems of SQC that have been solved using both these theories simultaneously. Some new results on the applications of fuzzy sets in SQC are presented in details. We also present problems which are still open, and whose solution should definitely increase the applicability of fuzzy sets in quality control.  相似文献   
2.
Reactive Magnetron Sputtering of Thin Film Solar Cells We show that reactive magnetron sputtering is well suited to deposit CuInS2‐thin film absorber layers of high electronic quality. Using metallic targets and substrate temperatures below 500 °C, compact films with grain sizes in the micrometer range can be obtained. The structural and electronic properties of these layers are comparable to CuInS2 thin films prepared by a 2‐step sulfurization process, which is being commercialized at present. In particular, the reactively sputtered films show minority carrier diffusion lengths larger than the layer thickness (≈ 2μm). This results in solar cells with conversion efficiences larger than 10 %, comparable to the best conversion efficiencies for CuInS2‐solar cells obtained from other deposition processes. These results are promising for the potential application of magnetron sputtering as a large area deposition process for absorber layers in thin film solar cells.  相似文献   
3.
The gallium gradient in Cu(In,Ga)Se2 (CIGS) layers, which forms during the two industrially relevant deposition routes, the sequential and co‐evaporation processes, plays a key role in the device performance of CIGS thin‐film modules. In this contribution, we present a comprehensive study on the formation, nature, and consequences of gallium gradients in CIGS solar cells. The formation of gallium gradients is analyzed in real time during a rapid selenization process by in situ X‐ray measurements. In addition, the gallium grading of a CIGS layer grown with an in‐line co‐evaporation process is analyzed by means of depth profiling with mass spectrometry. This gallium gradient of a real solar cell served as input data for device simulations. Depth‐dependent occurrence of lateral inhomogeneities on the µm scale in CIGS deposited by the co‐evaporation process was investigated by highly spatially resolved luminescence measurements on etched CIGS samples, which revealed a dependence of the optical bandgap, the quasi‐Fermi level splitting, transition levels, and the vertical gallium gradient. Transmission electron microscopy analyses of CIGS cross‐sections point to a difference in gallium content in the near surface region of neighboring grains. Migration barriers for a copper‐vacancy‐mediated indium and gallium diffusion in CuInSe2 and CuGaSe2 were calculated using density functional theory. The migration barrier for the InCu antisite in CuGaSe2 is significantly lower compared with the GaCu antisite in CuInSe2, which is in accordance with the experimentally observed Ga gradients in CIGS layers grown by co‐evaporation and selenization processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
4.
Possibilities of arising of aftercavity interaction are analyzed in the ITER 170?GHz 2?MW coaxial cavity gyrotron and the 170?GHz 1?MW cylindrical cavity gyrotron, as well as in the compact 394.5?GHz low power gyrotron FU CW-CI. Also, the simulations for the gyrotron efficiency in the presence of aftercavity interaction are performed in the cold cavity approximation. Results of the analysis illustrate the subtle interplay between the geometry of the output taper and the profile of the magnetic field.  相似文献   
5.
Solar cell absorber films of Cu(In,Ga)S2 have been fabricated by multi-stage co-evaporation resulting in compositional ratios [Cu]/([In] + [Ga]) = 0.93-0.99 and [Ga]/([In] + [Ga]) = 0.15. Intentional doping is provided by sodium supplied from NaF precursor layers of different thicknesses. Phases, structure and morphology of the resulting films are investigated by X-ray diffraction (XRD) and scanning electron microscopy. The XRD patterns show CuIn5S8 thiospinel formation predominantly at the surface in order to accommodate decreasing Cu content. Correlated with the CuIn5S8 formation, a Ga-enrichment of the chalcopyrite phase is seen at the surface. Since no CuS layer is present on the as-deposited films, functioning solar cells with CdS buffer and ZnO window layers were fabricated without KCN etch. The open-circuit voltage of solar cells correlates with the copper content and with the amount of sodium supplied. The highest efficiency cell (open-circuit voltage 738 mV, short-circuit current 19.3 mA/cm2, fill factor 65%, efficiency 9.3%) is based on the absorber with the least Cu deficiency, [Cu]/([In] + [Ga]) = 0.99. The activation energy of the diode saturation current density of such a cell is extracted from temperature- and illumination-dependent current-voltage measurements. A value of 1.04 eV, less than the band gap, suggests the heterojunction interface as the dominant recombination zone, just as in cells based on Cu-rich grown Cu(In,Ga)S2.  相似文献   
6.
One strategy for improving the selectivity and toxicity profile of antitumor agents is to design drug carrier systems employing soluble macromolecules or carrier proteins. Thus, five maleimide derivatives of chlorambucil were bound to thiolated human serum transferrin which differ in the stability of the chemical link between drug and spacer. The maleimide ester derivatives 1 and 2 were prepared by reacting 2-hydroxyethylmaleimide or 3-maleimidophenol with the carboxyl group of chlorambucil, and the carboxylic hydrazone derivatives 5-7 were obtained through reaction of 2-maleimidoacetaldehyde, 3-maleimidoacetophenone, or 3-maleimidobenzaldehyde with the carboxylic acid hydrazide derivative of chlorambucil. The alkylating activity of transferrin-bound chlorambucil was determined with the aid of 4-(4-nitrobenzyl)pyridine (NBP) demonstrating that on average 3 equivalents were protein-bound. Evaluation of the cytotoxicity of free chlorambucil and the respective transferrin conjugates in the MCF7 mammary carcinoma and MOLT4 leukemia cell line employing a propidium iodide fluorescence assay demonstrated that the conjugates in which chlorambucil was bound to transferrin through non-acid-sensitive linkers, i.e., an ester or benzaldehyde carboxylic hydrazone bond, were not, on the whole, as active as chlorambucil. In contrast, the two conjugates in which chlorambucil was bound to transferrin through acid-sensitive carboxylic hydrazone bonds were as active as or more active than chlorambucil in both cell lines. Especially, the conjugate in which chlorambucil was bound to transferrin through an acetaldehyde carboxylic hydrazone bond exhibited IC50 values which were approximately 3-18-fold lower than those of chlorambucil. Preliminary toxicity studies in mice showed that this conjugate can be administered at higher doses in comparison to unbound chlorambucil. The structure-activity relationships of the transferrin conjugates are discussed with respect to their pH-dependent acid sensitivity, their serum stability, and their cytotoxicity.  相似文献   
7.
The internal friction (Q –1) spectrum of YBa2Cu3Ox superconducting ceramic exhibits several peaks. It has been confirmed that the high-temperature peak (around 240 K) depends on structural changes and varies during subsequent cycles of cooling and heating.Q –1 conductivity, X-ray spectra and the shielding effect have been measured on several samples having different superconducting properties obtained by various thermal treatments. Splitting is a characteristic feature of the high-temperature internal friction peak of the sample which exhibits good superconducting properties. In the case of the specimen exhibiting the worst properties the peaks decrease and overlap. In both cases an increase can be observed of this peak with the number of thermal cycles. After ageing at 470 K, the high-temperature peak disappears. Subsequent thermal cycles slightly recover it. Hysteresis of the Young modulus is also observed. The results are interpreted as transition of the 04 oxygen atom between two energy minima in the O4-Cu-O4 chain.  相似文献   
8.
9.
Understanding energy transport in metal halide perovskites is essential to effectively guide further optimization of materials and device designs. However, difficulties to disentangle charge carrier diffusion, photon recycling, and photon transport have led to contradicting reports and uncertainty regarding which mechanism dominates. In this study, monocrystalline CsPbBr3 nanowires serve as 1D model systems to help unravel the respective contribution of energy transport processes in metal-halide perovskites. Spatially, temporally, and spectrally resolved photoluminescence (PL) microscopy reveals characteristic signatures of each transport mechanism from which a robust model describing the PL signal accounting for carrier diffusion, photon propagation, and photon recycling is developed. For the investigated CsPbBr3 nanowires, an ambipolar carrier mobility of μ = 35 cm2 V−1 s−1 is determined, and is found that charge carrier diffusion dominates the energy transport process over photon recycling. Moreover, the general applicability of the developed model is demonstrated on different perovskite compounds by applying it to data provided in previous related reports, from which clarity is gained as to why conflicting reports exist. These findings, therefore, serve as a useful tool to assist future studies aimed at characterizing energy transport mechanisms in semiconductor nanowires using PL.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号