首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   514篇
  免费   31篇
  国内免费   2篇
工业技术   547篇
  2024年   1篇
  2023年   7篇
  2022年   15篇
  2021年   29篇
  2020年   23篇
  2019年   26篇
  2018年   32篇
  2017年   33篇
  2016年   23篇
  2015年   17篇
  2014年   22篇
  2013年   33篇
  2012年   39篇
  2011年   51篇
  2010年   21篇
  2009年   24篇
  2008年   22篇
  2007年   24篇
  2006年   11篇
  2005年   16篇
  2004年   7篇
  2003年   7篇
  2002年   11篇
  2001年   5篇
  2000年   3篇
  1999年   7篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   7篇
  1994年   6篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1989年   2篇
  1986年   1篇
  1983年   1篇
排序方式: 共有547条查询结果,搜索用时 187 毫秒
1.

In this paper, we propose to use Artificial Bee Colony (ABC) optimization to solve the joint mode selection, channel assignment, and power allocation (JMSCPA) problem to maximize system throughput and spectral efficiency. JMSCPA is a problem where the allocation of channel and power depends on the mode selection. Such problems require two step solution and are called bi-level optimization problems. As bi-level optimization increases the complexity and computational time, we propose a modified version of single-level ABC algorithm aided with the adaptive transmission mode selection algorithm to allocate the cellular, reuse, and dedicated modes to the DUs along with channel and power allocation based on the network traffic load scenarios. A single variable, represented by the users (CUs and DUs) is used to allocate mode selection, and channel allocation to solve the JMSCPA problem, leading to a simpler solution with faster convergence, and significant reduction in the computational complexity which scales linearly with the number of users. Further, the proposed solution avoids premature stagnation of conventional ABC into local minima by incorporating a modification in its update procedure. The efficacy of the ABC-aided approach, as compared to the results reported in the literature, is validated by extensive numerical investigations under different simulation scenarios.

  相似文献   
2.
Traditional protocols for routing in ad hoc networks attempt to obtain optimal or shortest paths, and in doing so may incur significant route discovery overhead. Such approaches may be appropriate for routing long-lived transfers where the initial cost of route discovery may be amortized over the life of the connection. For short-lived connections, however, such as resource discovery and small transfers, traditional shortest path approaches may be quite inefficient. In this paper we propose a novel architecture, CARD, for resource discovery in large-scale wireless ad hoc networks. Our mechanism is suitable for resource discovery as well as routing very small data transfers or transactions in which the cost of data transfer is much smaller than the cost of route discovery. Our architecture avoids expensive mechanisms such as global flooding and complex hierarchy formation and does not require any location information. In CARD resources within the vicinity of a node, up to a limited number of hops, are discovered using a proactive scheme. For resources beyond the vicinity, each node maintains a few distant nodes called contacts. Contacts help in creating a small world in the network and provide an efficient way to query for distant resources. Using contacts, the network view (or reachability) of the nodes increases, reducing the discovery overhead and increasing the success rate. On the other hand, increasing the number of contacts also increases control overhead. We study such trade-off in depth and present mechanisms for contact selection and maintenance that attempt to increase reachability with reduced overhead. Our schemes adapt gracefully to network dynamics and mobility using soft-state periodic mechanisms to validate and recover paths to contacts. Our simulation results show that CARD is scalable and can be configured to provide desirable performance for various network sizes. Comparisons with other schemes show overhead savings reaching over 93% (vs. flooding) and 80% (vs. bordercasting or zone routing) for high query rates in large-scale networks.  相似文献   
3.
The processing of stepwise graded Si3N4/SiC ceramics by pressureless co-sintering is described. Here, SiC (high elastic modulus, high thermal expansion coefficient) forms the substrate and Si3N4 (low elastic modulus, low thermal expansion coefficient) forms the top contact surface, with a stepwise gradient in composition existing between the two over a depth of ∼1.7 mm. The resulting Si3N4 contact surface is fine-grained and dense, and it contains only 2 vol% yttrium aluminum garnet (YAG) additive. This graded ceramic shows resistance to cone-crack formation under Hertzian indentation, which is attributed to a combined effect of the elastic-modulus gradient and the compressive thermal-expansion-mismatch residual stress present at the contact surface. The presence of the residual stress is corroborated and quantified using Vickers indentation tests. The graded ceramic also possesses wear properties that are significantly improved compared with dense, monolithic Si3N4 containing 2 vol% YAG additive. The improved wear resistance is attributed solely to the large compressive stress present at the contact surface. A modification of the simple wear model by Lawn and co-workers is used to rationalize the wear results. Results from this work clearly show that the introduction of surface compressive residual stresses can significantly improve the wear resistance of polycrystalline ceramics, which may have important implications for the design of contact-damage-resistant ceramics.  相似文献   
4.
The Journal of Supercomputing - Multiple tasks arrive in the distributed systems that can be executed in either parallel or sequential manner. Before the execution, tasks are scheduled prioritywise...  相似文献   
5.
6.
Rare-earth zirconates have been identified as a class of low-thermal-conductivity ceramics for possible use in thermal barrier coatings (TBCs) for gas-turbine engine applications. To document and compare the thermal conductivities of important rare-earth zirconates, we have measured the thermal conductivities of the following hot-pressed ceramics: (i) Gd2Zr2O7 (pyrochlore phase), (ii) Gd2Zr2O7 (fluorite phase), (iii) Gd2.58Zr1.57O7 (fluorite phase), (iv) Nd2Zr2O7 (pyrochlore phase), and (v) Sm2Zr2O7 (pyrochlore phase). We have also measured the thermal conductivity of pressureless-sintered 7 wt% yttria-stabilized zirconia (7YSZ)—the commonly used composition in current TBCs. All rare-earth zirconates investigated here showed nearly identical thermal conductivities, all of which were ∼30% lower than the thermal conductivity of 7YSZ in the temperature range 25°–700°C. This finding is discussed qualitatively with reference to thermal-conductivity theory.  相似文献   
7.
ABSTRACT

Nano-composite polymer gel electrolytes (NPGEs) based on polymer poly(vinylidene fluoride-co-hexafluoropropylene) PVdF-HFP, ionic liquid, 1-butyl-3- methylimidazolium bis(trifluoromethanesulfonyl)imide BMIMTFSI, Li-salt along with the addition of SiO2 nanoparticles have been synthesized and characterized by various techniques. Prepared NPGEs show high room temperature ionic conductivity (~10?3 S/cm) and have a wide electrochemical window (ECW) (~3.3–3.5 V). The galvanostatic charge/discharge profile was studied by sandwiching best performing NPGEs between a LiFePO4 cathode and lithium metal anode. The specific discharge capacity of the cell (Li/NPGE/LiFePO4) room temperature at 0.1C rate is found to be 138 mAh/g.  相似文献   
8.
This paper presents a multivehicle sampling algorithm to generate trajectories for nonuniform coverage of a nonstationary spatiotemporal field characterized by spatial and temporal decorrelation scales that vary in space and time, respectively. The sampling algorithm described in this paper uses a nonlinear coordinate transformation that renders the field locally stationary so that existing multivehicle control algorithms can be used to provide uniform coverage. When transformed back to the original coordinates, the sampling trajectories are concentrated in regions of short spatial and temporal decorrelation scales. For fields with coupled spatial statistics, i.e., the spatial decorrelation scales are functions of both spatial dimensions, the coordinate transformation is implemented numerically, whereas for decoupled spatial statistics, the transformation is expressed analytically. We show that the analytical transformation results in vehicle motion that preserves the vehicle sampling speed (which is a measure of vehicle speed scaled by the ratio of the spatial and temporal decorrelation scales), in the original domain; the sampling speed determines the minimum number of vehicles needed to cover a spatiotemporal domain. Theoretical results are illustrated by numerical simulations.  相似文献   
9.
In Situ Processing of Silicon Carbide Layer Structures   总被引:1,自引:0,他引:1  
A novel route to low-cost processing of silicon carbide (SiC) layer structures is desribed. The processing involves pressureless liquid-phase cosintering of compacted power layers of SiC, containing alumina (Al2O3) and yttria (Y2O3 sintering additives to yield and yttrium aluminum garnet (YAG) second phase. By adjusting the β:α SiC phase ratios in the individual starting powders, alternate layers with distinctively different microstructures are produced: (i) "homogeneous" microstructures, with fine equiaxed SiC grains, designed for high strength; and (ii) "heterogeneous: microstructures with coarse and elongate SiC grains, designed for high toughness. By virtue of the common SiC and YAG phases, the interlayer interfaces are chemically compatible and strongly bonded. Exploratory Hertzian indetation tests across a bilayer interface confirm the capacity of the tough heterogeneous layer to inhibit potentially dangerous cracks propagating through the homogeneous layer. The potential for application of this novel processing approach to other layer architectures and other ceramic systems is considered.  相似文献   
10.
Effects of N2 sintering atmosphere and the starting SiC powder on the microstructural evolution of liquid-phase-sintered (LPS) SiC were studied. It was found that, for the β-SiC starting powder case, there was complete suppression of the β→α phase transformation, which otherwise goes to completion in Ar atmosphere. It was also found that the microstructures were equiaxed and that the coarsening was severely retarded, which was in contrast with the Ar-atmosphere case. Chemical analyses of the specimens sintered in N2 atmosphere revealed the presence of significant amounts of nitrogen, which was believed to reside mostly in the intergranular phase. It was argued that the presence of nitrogen in the LPS SiC helped stabilize the β-SiC phase, thereby preventing the β→α phase transformation and the attendant formation of elongated grains. To investigate the coarsening retardation, internal friction measurements were performed on LPS SiC specimens sintered in either Ar or N2 atmosphere. For specimens sintered in N2 atmosphere, a remarkable shift of the grain-boundary sliding relaxation peak toward higher temperatures and very high activation energy values were observed, possibly due to the incorporation of nitrogen into the structure of the intergranular liquid phase. The highly refractory and viscous nature of the intergranular phase was deemed responsible for retarding the solution–reprecipitation coarsening in these materials. Parallel experiments with specimens sintered using α-SiC starting powders further reinforce these arguments. Thus, processing of LPS SiC in N2 atmosphere open the possibility of tailoring their microstructures for room-temperature mechanical properties and for making high-temperature materials that are highly resistant to coarsening and creep.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号