首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
工业技术   25篇
  2023年   6篇
  2022年   4篇
  2021年   3篇
  2020年   3篇
  2019年   6篇
  2018年   3篇
排序方式: 共有25条查询结果,搜索用时 437 毫秒
1.
Medical image fusion is considered the best method for obtaining one image with rich details for efficient medical diagnosis and therapy. Deep learning provides a high performance for several medical image analysis applications. This paper proposes a deep learning model for the medical image fusion process. This model depends on Convolutional Neural Network (CNN). The basic idea of the proposed model is to extract features from both CT and MR images. Then, an additional process is executed on the extracted features. After that, the fused feature map is reconstructed to obtain the resulting fused image. Finally, the quality of the resulting fused image is enhanced by various enhancement techniques such as Histogram Matching (HM), Histogram Equalization (HE), fuzzy technique, fuzzy type Π, and Contrast Limited Histogram Equalization (CLAHE). The performance of the proposed fusion-based CNN model is measured by various metrics of the fusion and enhancement quality. Different realistic datasets of different modalities and diseases are tested and implemented. Also, real datasets are tested in the simulation analysis.  相似文献   
2.
A substitution box (S-Box) is a crucial component of contemporary cryptosystems that provide data protection in block ciphers. At the moment, chaotic maps are being created and extensively used to generate these S-Boxes as a chaotic map assists in providing disorder and resistance to combat cryptanalytical attempts. In this paper, the construction of a dynamic S-Box using a cipher key is proposed using a novel chaotic map and an innovative tweaking approach. The projected chaotic map and the proposed tweak approach are presented for the first time and the use of parameters in their working makes both of these dynamic in nature. The tweak approach employs cubic polynomials while permuting the values of an initial S-Box to enhance its cryptographic fort. Values of the parameters are provided using the cipher key and a small variation in values of these parameters results in a completely different unique S-Box. Comparative analysis and exploration confirmed that the projected chaotic map exhibits a significant amount of chaotic complexity. The security assessment in terms of bijectivity, nonlinearity, bits independence, strict avalanche, linear approximation probability, and differential probability criteria are utilized to critically investigate the effectiveness of the proposed S-Box against several assaults. The proposed S-Box’s cryptographic performance is comparable to those of recently projected S-Boxes for its adaption in real-world security applications. The comparative scrutiny pacifies the genuine potential of the proposed S-Box in terms of its applicability for data security.  相似文献   
3.
Fault detection of the photovoltaic (PV) grid is necessary to detect serious output power reduction to avoid PV modules’ damage. To identify the fault of the PV arrays, there is a necessity to implement an automatic system. In this IoT and LabVIEW-based automatic fault detection of 3 × 3 solar array, a PV system is proposed to control and monitor Internet connectivity remotely. Hardware component to automatically reconfigure the solar PV array from the series-parallel (SP) to the complete cross-linked array underneath partial shading conditions (PSC) is centered on the Atmega328 system to achieve maximum power. In the LabVIEW environment, an automated monitoring system is developed. The automatic monitoring system assesses the voltage drop losses present in the DC side of the PV generator and generates a decimal weighted value depending on the defective solar panels and transmits this value to the remote station through an RF modem, and provides an indicator of the faulty solar panel over the built-in Interface LabVIEW. The managing of this GUI indicator helps the monitoring system to generate a panel alert for damaged panels in the PV system. Node MCU in the receiver section enables transmission of the fault status of PV arrays via Internet connectivity. The IoT-based Blynk app is employed for visualizing the fault status of the 3 × 3 PV array. The dashboard of Blynk visualizes every array with the status.  相似文献   
4.
Recently, ground-penetrating radar (GPR) has been extended as a well-known area to investigate the subsurface objects. However, its output has a low resolution, and it needs more processing for more interpretation. This paper presents two algorithms for landmine detection from GPR images. The first algorithm depends on a multi-scale technique. A Gaussian kernel with a particular scale is convolved with the image, and after that, two gradients are estimated; horizontal and vertical gradients. Then, histogram and cumulative histogram are estimated for the overall gradient image. The bin values on the cumulative histogram are used for discrimination between images with and without landmines. Moreover, a neural classifier is used to classify images with cumulative histograms as feature vectors. The second algorithm is based on scale-space analysis with the number of speeded-up robust feature (SURF) points as the key parameter for classification. In addition, this paper presents a framework for size reduction of GPR images based on decimation for efficient storage. The further classification steps can be performed on images after interpolation. The sensitivity of classification accuracy to the interpolation process is studied in detail.  相似文献   
5.
Three-Dimensional Multi-View Video (3D MVV) contains diverse video streams taken by different cameras around an object. Thence, it is an imperative assignment to fulfill efficient compression to attain future resource bonds whilst preserving a decisive reception MVV quality. The extensive 3D MVV encoding and transmission over mobile or Internet are vulnerable to packet losses on account of the existence of severe channel faults and restricted bandwidth. In this work, we propose a new Encoder-Independent Decoder-Dependent Depth-Assisted Error Concealment (EIDD-DAEC) algorithm. It invests the depth correlations between the temporally, spatially, and inter-view adjoining Macro-Blocks (MBs) to conceal the erroneous streams. At the encoder, the existing inter-view, temporal, and spatial matching are exploited to efficiently compress the 3D MVV streams and to estimate the Disparity Vectors (DVs) and Motion Vectors (MVs). At the decoder, the gathered MVs and DVs from the received coded streams are used to calculate additional depth-assisted MVs and DVs, which are afterwards combined with the collected candidate texture color MVs and DVs groups for concealing the lost MBs of inter- and intra-encoded frames. Finally, the optimum DVs and MVs concealment candidates are selected by the Directional Interpolation Error Concealment Algorithm (DIECA) and Decoder Motion Vector Estimation Algorithm (DMVEA), respectively. Experimental results on several standardized 3D MVV sequences verified the efficacy of the proposed EIDD-DAEC algorithm by achieving ameliorated efficacious objective and subjective results without generating and transporting depth maps at the encoder. The proposed work achieves high 3D MVV quality performance with an improved average Peak Signal-to-Noise Ratio (PSNR) gain by up to 0.95 ~ 2.70 dBs compared to the state-of-the-art error concealment algorithms, which do not employ depth-assisted correlations at different Quantization Parameters (QPs) and Packet Loss Rates (PLRs) of 40%.  相似文献   
6.
Multimedia Tools and Applications - Three-Dimensional Multi-View Video (3D-MVV) transmission over wireless networks suffers from losses. Therefore, the robust performance of 3D-MVV transmission...  相似文献   
7.
Multimedia Tools and Applications - In the Three-Dimensional H.264 Multi-view Video Coding (3D H.264/MVC), the original 3D Video (3DV) sequence is a combination of variable video frames captured...  相似文献   
8.
In recent years, Digital Twin (DT) has gained significant interest from academia and industry due to the advanced in information technology, communication systems, Artificial Intelligence (AI), Cloud Computing (CC), and Industrial Internet of Things (IIoT). The main concept of the DT is to provide a comprehensive tangible, and operational explanation of any element, asset, or system. However, it is an extremely dynamic taxonomy developing in complexity during the life cycle that produces a massive amount of engendered data and information. Likewise, with the development of AI, digital twins can be redefined and could be a crucial approach to aid the Internet of Things (IoT)-based DT applications for transferring the data and value onto the Internet with better decision-making. Therefore, this paper introduces an efficient DT-based fault diagnosis model based on machine learning (ML) tools. In this framework, the DT model of the machine is constructed by creating the simulation model. In the proposed framework, the Genetic algorithm (GA) is used for the optimization task to improve the classification accuracy. Furthermore, we evaluate the proposed fault diagnosis framework using performance metrics such as precision, accuracy, F-measure, and recall. The proposed framework is comprehensively examined using the triplex pump fault diagnosis. The experimental results demonstrated that the hybrid GA-ML method gives outstanding results compared to ML methods like Logistic Regression (LR), Naïve Bayes (NB), and Support Vector Machine (SVM). The suggested framework achieves the highest accuracy of 95% for the employed hybrid GA-SVM. The proposed framework will effectively help industrial operators make an appropriate decision concerning the fault analysis for IIoT applications in the context of Industry 4.0.  相似文献   
9.
Coronavirus (COVID-19) infection was initially acknowledged as a global pandemic in Wuhan in China. World Health Organization (WHO) stated that the COVID-19 is an epidemic that causes a 3.4% death rate. Chest X-Ray (CXR) and Computerized Tomography (CT) screening of infected persons are essential in diagnosis applications. There are numerous ways to identify positive COVID-19 cases. One of the fundamental ways is radiology imaging through CXR, or CT images. The comparison of CT and CXR scans revealed that CT scans are more effective in the diagnosis process due to their high quality. Hence, automated classification techniques are required to facilitate the diagnosis process. Deep Learning (DL) is an effective tool that can be utilized for detection and classification this type of medical images. The deep Convolutional Neural Networks (CNNs) can learn and extract essential features from different medical image datasets. In this paper, a CNN architecture for automated COVID-19 detection from CXR and CT images is offered. Three activation functions as well as three optimizers are tested and compared for this task. The proposed architecture is built from scratch and the COVID-19 image datasets are directly fed to train it. The performance is tested and investigated on the CT and CXR datasets. Three activation functions: Tanh, Sigmoid, and ReLU are compared using a constant learning rate and different batch sizes. Different optimizers are studied with different batch sizes and a constant learning rate. Finally, a comparison between different combinations of activation functions and optimizers is presented, and the optimal configuration is determined. Hence, the main objective is to improve the detection accuracy of COVID-19 from CXR and CT images using DL by employing CNNs to classify medical COVID-19 images in an early stage. The proposed model achieves a classification accuracy of 91.67% on CXR image dataset, and a classification accuracy of 100% on CT dataset with training times of 58 min and 46 min on CXR and CT datasets, respectively. The best results are obtained using the ReLU activation function combined with the SGDM optimizer at a learning rate of 10−5 and a minibatch size of 16.  相似文献   
10.
Hyperspectral imaging is gaining a significant role in agricultural remote sensing applications. Its data unit is the hyperspectral cube which holds spatial information in two dimensions while spectral band information of each pixel in the third dimension. The classification accuracy of hyperspectral images (HSI) increases significantly by employing both spatial and spectral features. For this work, the data was acquired using an airborne hyperspectral imager system which collected HSI in the visible and near-infrared (VNIR) range of 400 to 1000 nm wavelength within 180 spectral bands. The dataset is collected for nine different crops on agricultural land with a spectral resolution of 3.3 nm wavelength for each pixel. The data was cleaned from geometric distortions and stored with the class labels and annotations of global localization using the inertial navigation system. In this study, a unique pixel-based approach was designed to improve the crops' classification accuracy by using the edge-preserving features (EPF) and principal component analysis (PCA) in conjunction. The preliminary processing generated the high-dimensional EPF stack by applying the edge-preserving filters on acquired HSI. In the second step, this high dimensional stack was treated with the PCA for dimensionality reduction without losing significant spectral information. The resultant feature space (PCA-EPF) demonstrated enhanced class separability for improved crop classification with reduced dimensionality and computational cost. The support vector machines classifier was employed for multiclass classification of target crops using PCA-EPF. The classification performance evaluation was measured in terms of individual class accuracy, overall accuracy, average accuracy, and Cohen kappa factor. The proposed scheme achieved greater than 90 % results for all the performance evaluation metrics. The PCA-EPF proved to be an effective attribute for crop classification using hyperspectral imaging in the VNIR range. The proposed scheme is well-suited for practical applications of crops and landfill estimations using agricultural remote sensing methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号