首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
  国内免费   2篇
工业技术   35篇
  2021年   1篇
  2018年   2篇
  2016年   3篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   5篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  1998年   3篇
  1997年   1篇
排序方式: 共有35条查询结果,搜索用时 113 毫秒
1.
In this work, we report on the investigation of the effect of dispersion of zinc selenide (ZnSe) nanocrystallites into polystyrene (PS) and silica (SiO2) thin films on their structural, morphological and photoluminescence properties. The ZnSe/PS nanocomposites thin films were synthesized by a direct dispersion of ZnSe crystallites into polymers solution, whereas the ZnSe–SiO2 films were prepared on glass substrates by the sol–gel dip-coating technique. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-rays (EDX), UV–visible spectrophotometry and photoluminescence spectroscopy (PL) techniques have been used to study the structural, morphological and optical properties of the prepared nanocomposite thin films. XRD patterns have demonstrated the incorporation of cubic ZnSe in both organic and inorganic matrices. SEM micrographs have indicated that ZnSe dispersion in the films is homogeneous. UV–visible absorption spectra of the nanocomposite thin films have put into evidence that the dispersion of ZnSe nanocrystals in the thin film matrices improved their optical absorption. Room temperature PL spectra have shown that the addition of ZnSe enhanced the UV emission of PS and all the emission of SiO2 thin films.  相似文献   
2.
This technical note is concerned with the problem of controlling plants over communication channels, where the plant is subject to two types of unstructured uncertainty: additive uncertainty and stable coprime factor uncertainty. Necessary lower bounds on the rate of transmission (or channel capacity) C, for robust stabilization, are computed explicitly. In particular, it is shown that the lower bound in the additive uncertainty case corresponds to a fixed point of a particular function. In the stable coprime factor uncertainty case, the derivation relies on linear fractional transformation concepts. The results are important in determining the minimum channel capacity needed in order to stabilize plants subject to unstructured uncertainty over communication channels. For instance, the bounds obtained can be used to analyze the effect of uncertainty on the channel capacity. An illustrative example is provided.  相似文献   
3.
Two methods are employed to evidenced the stress behavior in c-BN films. On the one hand, in depth stress profile of c-BN film, deposited by ion beam assisted evaporation, was performed by recording infrared spectra and substrate curvature after reactive ion etching (RIE) steps. It shows a peak of stress up to −17 GPa in the h-BN basal layer and a stress relaxation when the cubic phase appears. On the other hand, dynamic stress profiles of c-BN films deposited by a triode sputtering system, are obtained by recording infrared spectra and substrate curvature after various c-BN deposition times, with the same experimental conditions. Likewise, a peak of stress of −12 GPa is unmistakably observed in the h-BN basal layer followed by a stress release during c-BN nucleation, where an average value of −12 GPa is observed in the c-BN film volume. These results provide a support for the stress model proposed by McKenzie even if along with a minimum stress a high level of densification of the layer is needed.  相似文献   
4.
AlN films were prepared with a microwave plasma enhanced chemical vapor deposition reactor working at different process temperatures in order to obtain polycrystalline 〈0001〉 oriented films for piezoelectric applications. The films developed were characterized in terms of microstructure, composition, and mechanical properties. Crystalline development and a single orientation were obtained at high temperatures, where at the same time an increase in mechanical intrinsic stresses was observed. Well crystallized 〈0001〉 films were obtained at temperature as low as 500 °C. Furthermore, the evolution of microstructure with thickness at higher temperatures showed a single 〈0001〉 orientation with progressive increase of the texture as the thickness increased. This fact was related with changes in the observed microstructure along the film z-axis, evaluated by high resolution transmission electronic microscopy and selected area electron diffraction. Although orientation dispersion of these films, evidenced by the rocking curves FWHM, remained relatively high (>9°), they can be regarded as promising for piezoelectric applications. Annealing tests conducted at relatively high temperatures with films deposited at low temperature indicated that thermal effects have only a major effect during the film growth for the temperature values employed.  相似文献   
5.
Piezoelectric AlN thin films were deposited on Silicon substrates by triode reactive sputtering. The variation of residual stress versus bias voltage on the substrate was investigated. A compressive stress was always observed with a maximum value for a negative substrate bias of 50 V. For higher negative bias voltage values, the compressive stress decreases. X-ray diffraction measurements showed two kinds of growth orientation. First, without bias voltage, films are well crystallized and (002) oriented. Second, with bias voltage, the (002) orientation disappears and a small peak appears (situated in the 2θ = 32°-33° range) which can be attributed to (100) orientation. Finally, the influence of compressive stress and ion bombardment on the change of orientation is discussed.  相似文献   
6.
The surface of a screen-printed carbon electrode (SPCE) was modified by using amorphous carbon nitride (a-CNx) thin film deposited by reactive magnetron sputtering. Scanning electron microscopy and photoelectron spectroscopy measurements were used to characterise respectively the morphology and the chemical structure of the a-CNx modified electrodes. The incorporation of nitrogen in the amorphous carbon network was demonstrated by X ray photoelectron spectroscopy. The a-CNx layers were deposited on both carbon screen-printed electrode (SPCE) and silicon (Si) substrates. A comparative study showed that the nature of substrate, i.e. SPCE and Si, has a significant effect on both the surface morphology of deposited a-CNx film and their electrochemical properties. The improvement of the electrochemical reactivity of SPCE after a-CNx film deposition was highlighted both by comparing the shapes of voltammograms and calculating the apparent heterogeneous electron transfer rate constant.  相似文献   
7.
8.
We present the Fortran code SDECAY, which calculates the decay widths and branching ratios of all the supersymmetric particles in the Minimal Supersymmetric Standard Model, including higher order effects. Besides the usual two-body decays of sfermions and gauginos and the three-body decays of charginos, neutralinos and gluinos, we have also implemented the three-body decays of stops and sbottoms, and even the four-body decays of the stop; the important loop-induced decay modes are also included. The QCD corrections to the two-body decays involving strongly interacting particles and the dominant components of the electroweak corrections to all decay modes are implemented.

Program summary

Title of program: SDECAY Version 1.1a (March 2005)Catalogue identifier: ADVJProgram summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVJProgram obtainable: CPC Program Library, Queen's University of Belfast, N. IrelandLicensing provisions: noneComputer for which the program is designed: Any with a Fortran77 systemOperating systems under which the program has been tested: Linux, UnixTypical running time: A few seconds on modern personal computers and workstationsProgramming language used: Fortran77No. of lines in distributed program, including test data, etc.: 59 621No. of bytes in distributed program, including test data, etc.: 338 478Distribution format: tar.gzMemory required to execute (with test data): 7.3 MBDistribution format: ASCIINature of physical problem: Numerical calculation of the decay widths and branching ratios of supersymmetric particles in the Minimal Supersymmetric Standard Model (MSSM). The program calculates two-, three- and four-body decays and loop decays. It includes the SUSY-QCD corrections to two-body decays involving strongly interacting particles. The top-quark decays within the MSSM are evaluated as well.Method of solution: Two-dimensional numerical integration of the analytic formulae for the double differential decay widths of the three-body decays. The other decay widths are calculated analytically.Restrictions on the complexity of the problem: In the higher order decay modes the total decay widths of the virtually exchanged (s)particles are not included in their respective propagators. The higher order decays are calculated when the two-body decays are kinematically closed.  相似文献   
9.
Vanadium nitride(VN) was deposited by DC-sputtering on a vertically aligned carbon nanotube(CNTs)template for the purpose of nano-structuration. This led to the fabrication of hierarchically composite electrodes consisting of porous and nanostructured VN grown on vertically aligned CNTs in a nano-treelike configuration for micro-supercapacitor application. The electrodes show excellent performance with an areal capacitance as high as 37.5 m F cm~(-2) at a scan rate of 2 mV s~(-1) in a 0.5 MK_2SO_4 mild electrolyte solution. Furthermore, the capacitance decay was only 15% after 20,000 consecutive cycles. Moreover,the capacitance was found to increase with VN deposit thickness. The X-ray photoelectron spectroscopy analyses of the electrodes before and after cycling suggest that the oxide layers that form at the VN surface is the responsible for the redox energy storage in this material. Such electrodes can compete with other transition metal nitride based electrodes for micro-supercapacitors.  相似文献   
10.
Zinc oxide (ZnO) nanostructures are very attractive in various optoelectronic applications such as light emitting devices. A fabrication process of these ZnO nanostructures which gives a good crystalline quality and being compatible with that of micro-fabrication has significant importance for practical application. In this work ZnO films with different thicknesses were deposited by RF-sputtering on vertically aligned multiwalled carbon nanotube (MWCNTs) template in order to obtain ZnO nanorods. The obtained hybrid structures (ZnO/MWCNTs) were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and time resolved photoluminescence spectroscopy (PL). Results show that the ZnO/MWCNTs have a nanorod structure like morphology with a good crystalline quality of the deposited ZnO on the MWCNTs. PL measurements reveal an enhancement of the band edge signal of ZnO/MWCNTs which is three times of magnitude higher compared to the ZnO film deposited on silicon. Moreover, the intensity enhancement varies as function of the ZnO thickness. Such hybrid structures are promising for optoelectronic application, such as blue-violet sources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号