首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   15篇
工业技术   284篇
  2023年   3篇
  2022年   2篇
  2021年   10篇
  2020年   11篇
  2019年   18篇
  2018年   10篇
  2017年   13篇
  2016年   20篇
  2015年   12篇
  2014年   17篇
  2013年   35篇
  2012年   24篇
  2011年   31篇
  2010年   22篇
  2009年   13篇
  2008年   15篇
  2007年   8篇
  2006年   5篇
  2005年   4篇
  2004年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有284条查询结果,搜索用时 281 毫秒
1.
This study introduces an integrated fuzzy regression (FR) data envelopment analysis (DEA) algorithm for oil consumption estimation and optimization with uncertain and ambiguous data. This is quite important as oil consumption estimations deals with several uncertainties due to social, economic factors. Furthermore, DEA is integrated with FR because there is no clear cut as to which FR approach is superior for oil consumption estimation. The standard indicators used in this paper are population, cost of crude oil, gross domestic production (GDP) and annual oil production. Fifteen popular and most cited FR models are considered in the algorithm. Each FR model has different approach and advantages. The input data is divided into train and test data. The FR models have been tuned for all their parameters according to the train data, and the best coefficients are identified. Center of Average Method for defuzzification output process is applied. For determining the rate of error of FR models estimations, the rate of defuzzified output of each model is compared with its actual rate consumption in test data. The efficiency of 15 FR models is examined by the output-oriented Data Envelopment Analysis (DEA) model without inputs by considering three types of relative error: RMSE, MAE and MAPE. The applicability and superiority of the proposed algorithm is shown for monthly oil consumption of Canada, United States, Japan and Australia from 1990 to 2005.  相似文献   
2.
Injection molding is an ideal manufacturing process for producing high volumes of products from both thermoplastic and thermo setting materials. Nevertheless, in some cases, this type of manufacturing process decelerates the production rate as a bottleneck. Thus, layout optimization plays a crucial role in this type of problem in terms of increasing the efficiency of the production line. In this regard, a novel computer simulation–stochastic data envelopment analysis (CS-SDEA) algorithm is proposed in this paper to deal with a single row job-shop layout problem in an injection molding process. First, the system is modeled with discrete-event-simulation as a powerful tool for analyzing complex stochastic systems. Then, due to lack of information about some operational parameters, theory of uncertainty is imported to the simulation model. Finally, an output-oriented stochastic DEA model is used for ranking the outputs of simulation model. The proposed CS-SDEA algorithm is capable of modeling and optimizing non-linear, stochastic, and uncertain injection process problems. The solution quality is illustrated by an actual case study in a refrigerator manufacturing company.  相似文献   
3.
We performed surface modification of ultra‐high‐molecular‐weight polyethylene (UHMWPE) through chromic acid etching, with the aim of improving the performance of its composites with poly(ethylene terephthalate) (PET) fibers. In this article, we report on the morphology and physicomechanical and tribological properties of modified UHMWPE/PET composites. Composites containing chemically modified UHMWPE had higher impact properties than those based on unmodified UHMWPE because of improved interfacial bonding between the polymer matrix and the fibers and better dispersion of the fibers within the modified UHMWPE matrix. Chemical modification of UHMWPE before the introduction of PET fibers resulted in composites exhibiting improved wear resistance compared to the base material and compared to unmodified UHMWPE/PET composites. On the basis of the morphological studies of worn samples, microploughing and fatigue failure associated with microcracking were identified as the principle wear mechanisms. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   
4.
Identifying the presence of anti-nuclear antibody (ANA) in human epithelial type 2 (HEp-2) cells via the indirect immunofluorescence (IIF) protocol is commonly used to diagnose various connective tissue diseases in clinical pathology tests. As it is a labour and time intensive diagnostic process, several computer aided diagnostic (CAD) systems have been proposed. However, the existing CAD systems suffer from numerous shortcomings due to the selection of features, which is commonly based on expert experience. Such a choice of features may not work well when the CAD systems are retasked to another dataset. To address this, in our previous work, we proposed a novel approach that learns a set of filters from HEp-2 cell images. It is inspired by the receptive fields in the mammalian's vision system, since the receptive fields can be thought as a set of filters for similar shapes. We obtain robust filters for HEp-2 cell classification by employing the independent component analysis (ICA) framework. Although, this approach may be held back due to one particular problem; ICA learning requires a sufficiently large volume of training data which is not always available. In this paper, we demonstrate a biologically inspired solution to address this issue via the use of spontaneous activity patterns (SAP). The spontaneous activity patterns, which are related to the spontaneous neural activities initialised by the chemical release in the brain, are found as the typical stimuli for the visual cell development of newborn animals. In the classification system for HEp-2 cells, we propose to model SAP as a set of small image patches containing randomly positioned Gaussian spots. The SAP image patches are generated and mixed with the training images in order to learn filters via the ICA framework. The obtained filters are adopted to extract the set of responses from a HEp-2 cell image. We then employ regions from this set of responses and stack them into “cubic regions”, and apply a classification based on the correlation information of the features. We show that applying the additional SAP leads to a better classification performance on HEp-2 cell images compared to using only the existing patterns for training ICA filters. The improvement on classification is particularly significant when there are not enough specimen images available in the training set, as SAP adds more variations to the existing data that makes the learned ICA model more robust. We show that the proposed approach consistently outperforms three recently proposed CAD systems on two publicly available datasets: ICPR HEp-2 contest and SNPHEp-2.  相似文献   
5.
An analytical multiobjective maintenance planning model that maximizes reliability while minimizing cost and human error is proposed. In order to incorporate human error, the model minimizes the maximum human error over the planning horizon. Human Error Assessment and Reduction Technique (HEART) is used to quantify the human error. Maintenance activities include adjustment and replacement activities, in which each of them consumes a certain amount of human resource, spare parts, and budget and brings about a specified level of reliability and human error. Economic dependence is also considered, in which grouping maintenance activities reduces total cost. However, this may increase human error probability due to operator fatigue or time pressure. The main purpose is to investigate the relationship between human factors and maintenance activities to find the preferred maintenance plan. A multiple production line is considered as a case study. A sensitivity analysis is performed, and the effects of grouping and human factors on the preferred maintenance plan are discussed. It is shown how human proficiency may affect reliability and cost.  相似文献   
6.
Configuration fragments developed separately and focusing on different aspects, such as availability, security or performance of a system need to be integrated into a consistent system configuration to avoid system malfunctions. The main challenges of such integration are due to the overlapping entities and the integration relations between the entities of the different configuration fragments. In this paper we propose a model based approach for a consistent integration of configuration fragments into a system configuration. We use and extend the model weaving technique to capture the semantics of the relations between the entities of the configuration fragments. Moreover, we generate automatically the constraints corresponding to these semantic relations to complete the target system configuration profile. These constraints can be used to guard the configuration consistency during runtime modifications.  相似文献   
7.
Cell formation is a traditional problem in cellular manufacturing systems that concerns the allocation of parts, operators and machines to the cells. This paper presents a new mathematical programming model for cell formation in which operators’ personality and decision-making styles, skill in working with machines, and also job security are incorporated simultaneously. The model involves the following five objectives: (1) minimising costs of adding new machines to and removing machines from the cells at the beginning of each period, (2) minimising total cost of material handling, (3) maximising job security, (4) minimising inconsistency of operators’ decision styles in cells and (5) minimising cost of suitable skill. On account of the NP-hard nature of the proposed model, NSGA-II as a powerful meta-heuristic approach is used for solving large-sized problems. Furthermore, response surface methodology (RSM) is used for tuning the parameters. Lastly, MOPSO and two scalarization methods are employed for validation of the results obtained. To the best of our knowledge, this is the first study that presents a multi-objective mathematical model for cell formation problem considering operators’ personality and skill, addition and removal of machines and job security.  相似文献   
8.
Developing decision support system (DSS) can overcome the issues with personnel attributes and specifications. Personnel specifications have greatest impact on total efficiency. They can enhance total efficiency of critical personnel attributes. This study presents an intelligent integrated decision support system (DSS) for forecasting and optimization of complex personnel efficiency. DSS assesses the impact of personnel efficiency by data envelopment analysis (DEA), artificial neural network (ANN), rough set theory (RST), and K-Means clustering algorithm. DEA has two roles in this study. It provides data to ANN and finally it selects the best reduct through ANN results. Reduct is described as a minimum subset of features, completely discriminating all objects in a data set. The reduct selection is achieved by RST. ANN has two roles in the integrated algorithm. ANN results are basis for selecting the best reduct and it is used for forecasting total efficiency. Finally, K-Means algorithm is used to develop the DSS. A procedure is proposed to develop the DSS with stated tools and completed rule base. The DSS could help managers to forecast and optimize efficiencies by selected attributes and grouping inferred efficiency. Also, it is an ideal tool for careful forecasting and planning. The proposed DSS is applied to an actual banking system and its superiorities and advantages are discussed.  相似文献   
9.
In this study, the performance of axially loaded, small-scale, and fiber-reinforced polymer (FRP) wrapped concrete columns with various wrap angle configurations, wrap thicknesses, and concrete strengths was investigated through nonlinear finite element analysis. Three different wrap thicknesses, wrap ply angle configurations of 0°, ±15°, and 0°/±15°/0° with respect to the circumferential direction, and concrete strength values ranging from 3 ksi to 6 ksi were considered. An existing experimental study on FRP-confined circular columns in the literature was utilized to validate numerical analysis models. The finite element analysis results showed substantial increase in the axial compressive strength and ductility of the FRP-confined concrete cylinders as compared to the unconfined cylinders. The increase in wrap thickness also resulted in enhancement of axial strength and ductility of the concrete columns. The gain in axial compressive strength in FRP-wrapped concrete columns was observed to be higher for lower strength concrete and the highest in the columns wrapped with the 0° ply angle configuration.  相似文献   
10.
A novel poly(vinyl chloride)-based 2,3,5,6,8,9-hexahydro-1,4,7,10-benzotetra oxacyclododecine-12-carbaldehyde-12-(2,4-dinitrophenyl)hy (PBC) with sodium tetraphenyl borate (NaTPB) as an anion excluder, benzyl acetate (BA), acetophenon (AP) and o-nitrophenyloctyl ether (NPOE) as plasticizing solvent mediators was prepared and investigated as a beryllium selective sensor. The best performance was observed with the membrane having the PVC–NaTPB–NPOE–PBC composition 30%:3%:62%:5%, which worked well over a very wide concentration range (1.0×10−7 M to 1.0×10−1 M). The sensor exhibits a Nernstian slope of 29.9 mV per decade of Be2+ activity. The detection limit of the sensor is 7.0×10−8 M (630 ppt). The proposed electrode shows excellent discriminating ability toward Be2+ ion with regard to alkali, alkaline earth, transition and heavy metal ions. It was successfully applied to the determination of beryllium in a mineral sample.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号