首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3156篇
  免费   257篇
  国内免费   30篇
工业技术   3443篇
  2024年   7篇
  2023年   52篇
  2022年   92篇
  2021年   188篇
  2020年   172篇
  2019年   218篇
  2018年   206篇
  2017年   202篇
  2016年   195篇
  2015年   130篇
  2014年   219篇
  2013年   328篇
  2012年   224篇
  2011年   256篇
  2010年   163篇
  2009年   154篇
  2008年   99篇
  2007年   59篇
  2006年   61篇
  2005年   49篇
  2004年   29篇
  2003年   29篇
  2002年   32篇
  2001年   23篇
  2000年   23篇
  1999年   17篇
  1998年   35篇
  1997年   22篇
  1996年   18篇
  1995年   14篇
  1994年   13篇
  1993年   21篇
  1992年   4篇
  1991年   8篇
  1990年   10篇
  1989年   3篇
  1988年   5篇
  1987年   6篇
  1986年   6篇
  1985年   6篇
  1984年   8篇
  1983年   6篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   5篇
  1977年   5篇
  1975年   6篇
  1965年   1篇
排序方式: 共有3443条查询结果,搜索用时 15 毫秒
1.
Wireless Networks - Orthogonal frequency-division multiplexing with random multiple access (OFDRMA) is discussed for down-link communications, whereby a single base-station transmits information...  相似文献   
2.
Journal of Materials Science: Materials in Electronics - The main weakness of polymer gas sensors is its stability. Here, we report stability enhancement of a 100 nm polypyrrole (PPy) thin...  相似文献   
3.
In this work, we designed a magnetically-separable Fe3O4-rGO-ZnO ternary catalyst, ZnO anchored on the surface of reduced graphene oxide (rGO)-wrapped Fe3O4 magnetic nanoparticles, where rGO, as an effective interlayer, can enhance the synergistic effect between ZnO and Fe3O4. The effects of three operational parameters, namely irradiation time, hydrogen peroxide dosage, and the catalyst dosage, on the photo-Fenton degradation of methylene blue and methyl orange were investigated. The results showed that the Fe3O4-rGO-ZnO had great potential for the destruction of organic compounds from wastewater using the Fenton chemical oxidation method at neutral pH. Repeatability of the photocatalytic activity after 5 cycles showed only a tiny drop in the catalytic efficiency.  相似文献   
4.
Material encapsulation is a relatively new technique for coating a micro/nanosize particle or droplet with polymeric or inorganic shell. Encapsulation technology has many applications in various fields including drug delivery, cosmetic, agriculture, thermal energy storage, textile, and self-healing polymers. Poly(methyl methacrylate) (PMMA) is widely used as shell material in encapsulation due to its high chemical stability, biocompatibility, nontoxicity, and good mechanical properties. The main approach for micro/nanoencapsulation of materials using PMMA as shell comprises emulsion-based techniques such as emulsion polymerization and solvent evaporation from oil-in-water emulsion. In the present review, we first focus on the encapsulation techniques of liquid materials with PMMA shell by analyzing the effective processing parameters influencing the preparation of PMMA micro/nanocapsules. We then describe the morphology of PMMA capsules in emulsion systems according to thermodynamic relations. The techniques to investigation of mechanical properties of capsule shell and the release mechanisms of core material from PMMA capsules were also investigated. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48039.  相似文献   
5.
2,6-Bis(5-amino-1H-benzimidazol-2-yl)pyridine was prepared and characterized by Fourier transform infrared spectroscopy, elemental analysis, 1H-NMR, and 13C-NMR spectroscopic methods. Then a new poly(benzimidazole-amide) was synthesized by polymerization of the corresponding diamine and isophthalic acid. The obtained poly(benzimidazole-amide) exhibited good yield and high thermal stability. Due to the existence of benzimidazole moieties in polymer’s structure, it has the tendency to form complexes with metal ions. So, a new poly(benzimidazole-amide)/Co nanocomposite was prepared. Morphological studies revealed that metal nanoparticles were dispersed in the polymer matrix without any aggregation. poly(benzimidazole-amide)/Co nanocomposite was used as a catalyst in the oxidation of ethyl benzene to acetophenone with tert-butyl hydroperoxide.  相似文献   
6.
Solubility is one of the most indispensable physicochemical properties determining the compatibility of components of a blending system. Research has been focused on the solubility of carbon dioxide in polymers as a significant application of green chemistry. To replace costly and time-consuming experiments, a novel solubility prediction model based on a decision tree, called the stochastic gradient boosting algorithm, was proposed to predict CO2 solubility in 13 different polymers, based on 515 published experimental data lines. The results indicate that the proposed ensemble model is an effective method for predicting the CO2 solubility in various polymers, with highly satisfactory performance and high efficiency. It produces more accurate outputs than other methods such as machine learning schemes and an equation of state approach.  相似文献   
7.
Wireless Personal Communications - The integration of the Internet of Things (IoT) and cloud environment has led to the creation of Cloud of Things, which has given rise to new challenges in IoT...  相似文献   
8.
The potential energy profile of the reaction between dimethyl disulfide and OH? radicals is explored by utilizing ab initio and hybrid meta density functional theory methods. Having the energies and structural data of the stationary points, statistical rate theories, such as transition state theory and variable reaction coordinate-transition state theory, are employed to compute the overall rate constants, and discuss the mechanism and product channels. On the basis of the calculations, the overall rate coefficient is predicted to be 2.49?×?10?10?cm3?molecule?1?s?1 at 298?K. It is found that in the most favorable pathway, the reaction proceeds via formation of the relatively unstable intermediate CH3S?(OH)SCH3 decomposing rapidly to yield CH3S?+CH3SOH.  相似文献   
9.
This article presents an adaptive neural compensation scheme for a class of large-scale time delay nonlinear systems in the presence of unknown dead zone, external disturbances, and actuator faults. In this article, the quadratic Lyapunov–Krasovskii functionals are introduced to tackle the system delays. The unknown functions of the system are estimated by using radial basis function neural networks. Furthermore, a disturbance observer is developed to approximate the external disturbances. The proposed adaptive neural compensation control method is constructed by utilizing a backstepping technique. The boundedness of all the closed-loop signals is guaranteed via Lyapunov analysis and the tracking errors are proved to converge to a small neighborhood of the origin. Simulation results are provided to illustrate the effectiveness of the proposed control approach.  相似文献   
10.
Well-ordered and surface engineered hierarchical hydroxyapatite microspheres (HAM) were prepared via a template free hydrothermal process. Ethylene diamine tetra (methylene phosphonic acid) (EDTMP) was used as chelating or regulating agent for the first time in this study. The results indicated the formation of sheet-like particles in the absence of EDTMP. On the other hand, microspheres with radially grown nanorods (HAMNR) or nanosheets (HAMNS) on the surface were obtained (with average diameter of 5?µm) in the presence of EDTMP. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the crystalline phases in the synthesized samples. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that EDTMP concentration played an important part in regulating the morphology to form well organized microspheres with nanosheets or nanorods on the surface. Brunauer-Emmett-Teller (BET) revealed an increase in the specific surface area with the change in morphology from the HAMNS to HAMNR. Possible mechanisms are proposed to account for the formation of different morphologies based upon thermodynamic and kinetic theories.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号