首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
  国内免费   1篇
工业技术   3篇
  2022年   1篇
  2021年   2篇
排序方式: 共有3条查询结果,搜索用时 421 毫秒
1
1.
目的 胶质瘤的准确分级是辅助制定个性化治疗方案的主要手段,但现有研究大多数集中在基于肿瘤区域的分级预测上,需要事先勾画感兴趣区域,无法满足临床智能辅助诊断的实时性需求。因此,本文提出一种自适应多模态特征融合网络(adaptive multi-modal fusion net,AMMFNet),在不需要勾画肿瘤区域的情况下,实现原始采集图像到胶质瘤级别的端到端准确预测。方法 AMMFNet方法采用4个同构异义网络分支提取不同模态的多尺度图像特征;利用自适应多模态特征融合模块和降维模块进行特征融合;结合交叉熵分类损失和特征嵌入损失提高胶质瘤的分类精度。为了验证模型性能,本文采用MICCAI (Medical Image Computing and Computer Assisted Intervention Society)2018公开数据集进行训练和测试,与前沿深度学习模型和最新的胶质瘤分类模型进行对比,并采用精度以及受试者曲线下面积(area under curve,AUC)等指标进行定量分析。结果 在无需勾画肿瘤区域的情况下,本文模型预测胶质瘤分级的AUC为0.965;在使用肿瘤区域时,其AUC高达0.997,精度为0.982,比目前最好的胶质瘤分类模型——多任务卷积神经网络同比提高1.2%。结论 本文提出的自适应多模态特征融合网络,通过结合多模态、多语义级别特征,可以在未勾画肿瘤区域的前提下,准确地实现胶质瘤分级预测。  相似文献   
2.
医学图像配准对医学图像处理和分析至关重要, 由于定量磁敏感图像 (quantitative susceptibility mapping, QSM) 与T1加权图像的灰度、纹理等信息存在较大的差异, 现有的医学图像配准算法难以高效精确地完成两者配准. 因此, 本文提出了一个基于残差融合的无监督深度学习配准模型RF-RegNet (residual fusion registration network, RF-RegNet). RF-RegNet由编解码器、重采样器以及上下文自相似特征提取器3部分组成. 编解码器用于提取待配准图像对的特征和预测两者的位移矢量场 (displacement vector field, DVF), 重采样器根据估计的DVF对浮动QSM图像重采样, 上下文自相似特征提取器分别用于提取参考T1加权图像和重采样后的QSM图像的上下文自相似特征并计算两者的平均绝对误差 (mean absolute error, MAE) 以驱动卷积神经网络 (convolutional neural network, ConvNet) 学习. 实验结果表明本文提出的方法显著地提高了QSM图像与T1加权图像的配准精度, 满足临床的配准需求.  相似文献   
3.
目的 医学图像配准是医学图像处理和分析的关键环节,由于多模态图像的灰度、纹理等信息具有较大差异,难以设计准确的指标来量化图像对的相似性,导致无监督多模态图像配准的精度较低。因此,本文提出一种集成注意力增强和双重相似性引导的无监督深度学习配准模型(ensemble attention-based and dual similarity guidance registration network,EADSG-RegNet),结合全局灰度相似性和局部特征相似性共同引导参数优化,以提高磁共振T2加权图像和T1加权模板图像配准的精度。方法 EADSG-RegNet模型包含特征提取、变形场估计和重采样器。设计级联编码器和解码器实现图像对的多尺度特征提取和变形场估计,在级联编码器中引入集成注意力增强模块(integrated attention augmentation module,IAAM),通过训练的方式学习提取特征的重要程度,筛选出对配准任务更有用的特征,使解码器更准确地估计变形场。为了能够准确估计全局和局部形变,使用全局的灰度相似性归一化互信息(normalized mutual information,NMI)和基于SSC (self-similarity context)描述符的局部特征相似性共同作为损失函数训练网络。在公开数据集和内部数据集上验证模型的有效性,采用Dice分数对配准结果在全局灰质和白质以及局部组织解剖结构上作定量分析。结果 实验结果表明,相比于传统配准方法和深度学习配准模型,本文方法在可视化结果和定量分析两方面均优于其他方法。对比传统方法ANTs (advanced normalization tools)、深度学习方法voxelMorph和ADMIR (affine and deformable medical image registration),在全局灰质区域,Dice分数分别提升了3.5%,1.9%和1.5%。在全局白质区域分别提升了3.4%,1.6%和1.3%。对于局部组织结构,Dice分数分别提升了5.2%,3.1%和1.9%。消融实验表明,IAAM模块和SSC损失分别使Dice分数提升1.2%和1.5%。结论 本文提出的集成注意力增强的无监督多模态医学图像配准网络,通过强化有用特征实现变形场的准确估计,进而实现图像中细小区域的准确配准,对比实验验证了本文模型的有效性和泛化能力。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号