首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
工业技术   6篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
排序方式: 共有6条查询结果,搜索用时 187 毫秒
1
1.
首先通过分子力学法,确定辅酶Q10(CoQ10)的7个β-环糊精(β-CD)包合物(CoQ10-7-β-CDs)的最稳定优势构型.并进一步用分子动力学法模拟真空状态,一定时间内包合物的动态结构,并统计分析CoQ10包合前后结构的变化对性质的影响.结果表明CoQ10分子可以通过范德华力、库仑作用和氢键一起作用于β-CD分子形成1:7的稳定的D型包合结构.包合后,CoQ10分子的C=O双键和醌环上的C=C双键增长,侧链上的C=C双键缩短,其活性部位的抗氧化能力增大,而分子骨架的稳定性增强.  相似文献   
2.
甘油-水二元低温保护液玻璃化转变温度的理论预测   总被引:1,自引:1,他引:0  
玻璃化是牛物器官低温保存的最有效方式,玻璃化转变温度(Tg)是表征和研究低温保护液玻璃化过程的重要参数.目前,测定玻璃化转变温度最常用方法是差示扫描量热法(DSC)和动态热机械分析法(DMA).本文初次尝试利用等温等压下的分子动力学模拟预测甘油水溶液(60%,wt/%)的玻璃化转变温度.在90 K~273 K范围内,逐个温度点模拟计算体系的恒压热容(Cp)、密度(P)、无定形晶胞体积(Vcell)、特征原子的径向分布函数和氧键的形成几率等状态参数.通过这些参数随温度的变化规律和拐点,确定甘油水溶液的Tg值.分子模拟计算结果表明:模拟计算的Tg值(160.06 K~167.51 K)与DSC实验测定结果(163.60 K~167.10 K)几乎一样.可见,分子动力学模拟(MD)可以预测甘油-水二元低温保护液的玻璃化转变温度,这种方法也可推广到其他的多元低温保护液.  相似文献   
3.
磁性纳米粒由于其特殊的磁性能和超微粒子特性,在磁性材料领域有着巨大的应用价值,但未经表面有机改性的产品易于团聚且在部分基体材料中很难相容,限制了其应用范围的扩大.综述了磁性纳米粒的表面有机改性机理和表面吸附改性、表面偶联改性、表面接枝改性等几种常用有机改性类型,分析和评述了各有机改性的特征,展望了今后的研究方向.  相似文献   
4.
采用超声粉碎分散团聚磁性纳米Fe3O4粒子,用油酸对分散好的磁性粒子表面进行改性.结果表明,在纳米Fe3O4中油酸用量为0.5mL、超声次数为15次、每次2min、间隔时间为15s、pH值为7.5的条件下,改性效果最好,改性指数为0.87.红外光谱分析证明,油酸通过-COOH的"均化"与纳米Fe3O4粒子的表面结合实现了包覆改性,无分解和其它化学反应发生,改性效果良好.  相似文献   
5.
以海藻酸钠为主要原料、氯化钙为固化剂,通过喷雾方法制备了含Fe3O4磁性纳米粒子的海藻酸钙微胶囊,并优化了其制备条件.结果表明,当Fe3O4纳米粒子的添加量为1.605g/L、海藻酸钠溶液的质量分数为1.5%、氯化钙溶液的质量浓度为20g/L、喷雾高度为40cm时,可制备出磁响应最佳、球形完好、平均粒径小且分布均匀的磁性微胶囊.  相似文献   
6.
探索了采用三步法制备液芯磁性微囊的新方法.采用喷雾法制备了磁性海藻酸钙微球,用激光粒度仪测得微球平均粒径为130/μm.通过合成脲甲醛树脂对磁性海藻酸钙微球进行包覆,详细研究了脲甲醛预聚和缩聚条件对包覆结果的影响.最后对脲甲醛树脂包覆后的磁性海藻酸钙微球进行液化,结果表明,在一段时间内,液化效果受柠檬酸钠溶液浓度和pH值影响明显;最终微囊液化效果良好,体积增大,内部的磁性粒子向囊心集聚.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号