首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
农业科学   6篇
  2018年   1篇
  2013年   1篇
  2002年   1篇
  2000年   2篇
  1986年   1篇
排序方式: 共有6条查询结果,搜索用时 170 毫秒
1
1.
Investigations of European floodplain rivers demonstrate how landscape ecology can provide an effective framework to integrate pattern and process in river corridors, to examine environmental dynamics and interactive pathways between landscape elements, and to develop viable strategies for river conservation. The highly complex and dynamic nature of intact river corridors is particularly amenable to a landscape ecology perspective. Analysis of spatial patterns has provided considerable insight into environmental heterogeneity across river corridors and is an essential prelude to examining dynamic interactions. For example, data from aerial photographs, digitized maps and year-round field measurements in a glacial flood plain, enabled us to distinguish six channel types, based on the correspondence between connectivity and physicochemical attributes. Spatial data were also used to analyze longitudinal changes in landscape elements along the course of a morphologically-intact riverine corridor, providing insight into the structural complexity that must have characterized many Alpine rivers in the pristine state. Landscape indices were employed to investigate seasonal dynamics in a glacial flood plain of the Swiss Alps which exhibits a predictable expansion/contraction cycle, with corresponding shifts in flow paths (surface and subsurface) and water sources (snowmelt, englacial, subglacial, alluvial aquifer, hillslope aquifer). Surface connectivity exhibited an unexpected biphasic relationship with total channel length, whereas riverscape diversity progressively increased along the entire range of channel length. Reconstituting the functional integrity that characterizes intact river corridors should perhaps be the major goal of river conservation initiatives. Although understanding functional processes at the landscape scale is essential in this regard, few data are available. In the Alluvial Zone National Park on the Austrian Danube, three phases of hydrological connectivity were identified (disconnection, seepage connection and surface connection) that corresponded to the predominance of three functional processes (biotic interactions, primary production and particulate transport) within the river corridor.  相似文献   
2.
1. A key component of physical habitat along braided river systems is the exposed riverine sediment within the active zone. The relatively unmanaged, gravel‐bed Fiume Tagliamento, Italy, provides the focus for exploring two ecologically important properties of exposed riverine sediments: their within‐patch and between‐patch variability in calibre. 2. To characterize between‐patch variation in exposed riverine sediments, replicate (within‐patch) samples were obtained from three geomorphologically distinct locations along 130 km of the river: bar heads along the margin of the low‐flow channel, the heads of major bars across the exposed surface of the active zone, and floodplain surfaces. A photographic technique enabled rapid and consistent field sampling of the coarse sediments at bar heads along the low‐flow channel margin and on major bars across the dry bed. 3. A downstream decrease in particle size and an increase in within‐patch heterogeneity in sediment size were observed within bar head sediments along the margin of the low‐flow channel. Comparisons between major bar and low‐flow channel samples revealed greatest within‐patch variability in individual sediment size indices (D50, A‐ and B‐axes of the larger particles) at headwater sites, greatest between‐patch variability in the three measured indices in the central reaches, and lowest between‐patch variability at downstream sites. However, there was a distinct increase in the overall heterogeneity in particle size, which was sustained across all patches, in a downstream direction. 4. There was a clear downstream decrease in the size of floodplain sediments in the headwaters, but thereafter there was no distinct downstream trend in any of the calculated particle size indices. 5. The geomorphological controls on the observed patterns and the potential ecological significance of the patterns, particularly for plant establishment, are discussed in relation to the relative relief of the active zone, and the highly variable hydrological and climatic regime along the river. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
3.
River floodplains are among the most threatened ecosystems globally. Understanding the mechanisms that create and maintain biodiversity and ecosystem functioning of floodplains, is therefore a prerequisite for developing scientifically-sound management and conservation strategies. We quantified the spatial distribution of lateral aquatic habitats (i.e. tributaries, ponds, backwaters) and the associated insect assemblages (Ephemeroptera, Plecoptera, Trichoptera) along three Alpine river corridors (Tagliamento, Thur, and Rhône). Our objective was to assess the relative contribution of lateral habitats to river corridor diversity, and to identify the scale that contributed the most to regional (Alpine scale) species diversity. The number of lateral habitats decreased by 72 % from the near-natural Tagliamento (101) to the Thur river (42) and the regulated Rhône river (28). More than 50 % of the total species richness along each river was restricted to lateral habitats, which also exhibited higher taxon turnover rates (Whittaker’s beta diversity) than the associated main channel. Hierarchical diversity partitioning revealed that beta diversity among corridors was higher than expected, and accounted for 48 % of regional richness, partly reflecting biogeographical differences among catchments. However, diversity partitioning, excluding catchment-specific effects, showed that beta diversity among habitat types contributed significantly to regional richness (79 %). The present study is among the first to quantify the distribution and biodiversity of floodplain habitats along entire river continua. Our results demonstrated that biodiversity would be best preserved by protecting multiple catchments, and that lateral floodplain habitats contribute disproportionally to species richness at the river corridor and regional scale.  相似文献   
4.
5.
Clinical symptoms, laparotomy and slaughter findings of a case with cystic kidneys of a young bull are described.  相似文献   
6.
Physico-chemical heterogeneity in a glacial riverscape   总被引:3,自引:0,他引:3  
Malard  Florian  Tockner  Klement  Ward  J.V. 《Landscape Ecology》2000,15(8):679-695
Spatio-temporal heterogeneity in physico-chemical conditions associated with the annual expansion/contraction cycle in a complex glacial flood plain of the Swiss Alps was investigated employing a landscape approach. The diverse and dynamic aquatic habitats of the flood plain were visualized as an aquatic mosaic or riverscape. Based on samples collected at ca. monthly intervals for 1.5 yr along 17 floodplain transects, the 3 components of riverscape heterogeneity, extent, composition, and configuration, were quantified using categorical maps and indices of landscape patterns for turbidity and specific conductance. Changes in the spatial heterogeneity of 13 other physico-chemical parameters were further analyzed by means of a within-dates principal component analysis. Riverscape heterogeneity (RH), quantified by applying several indices of landscape pattern to turbidity and specific conductance data, was minimum during groundwater-dominated base flow in winter. Despite an increase in surface connectivity in the channel network with rising discharge, RH rose in spring and summer as additional chemically-distinct water sources (i.e., snowmelt runoff and glacial ablation) contributed to surface flow within the flood plain. Most other physico-chemical variables measured during this study exhibited the same spatio-temporal heterogeneity as turbidity and specific conductance. Overall, the glacial flood plain shifted from a monotonous physico-chemical riverscape in winter to a complex mosaic in summer, this seasonal pattern being clearly driven by hydrological factors operating at the catchment scale rather than by autogenic processes within individual water bodies. Although RH exhibited a predictable annual pattern in response to the seasonal flow regime, we expect the channel network to undergo future modifications from stochastic factors associated with flood events and long-term changes reflecting movements of the glaciers.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号