首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
  国内免费   1篇
工业技术   36篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2018年   2篇
  2017年   6篇
  2016年   2篇
  2013年   6篇
  2012年   6篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2000年   2篇
  1996年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
Metallurgical and Materials Transactions A - Variant pairing in bainite was evaluated in four different commercial low alloy steels with medium to high carbon content. The steels investigated were...  相似文献   
2.
The effect of carbon content on the variant pairing tendency of martensite formed in Fe–C alloys is investigated by means of electron backscattered diffraction analysis. The method used is based on experimentally determined orientation relationships between austenite and martensite. The results show that the carbon content has a strong effect on the martensite variant pairing tendency. This observed change in variant pairing tendency is discussed in relation to the well-known morphological transition from lath to plate martensite in Fe–C alloys and the formation of packets and plate groups. The results indicate that quantitative analysis of variant pairing, as demonstrated here, may facilitate martensite characterization in Fe–C alloys as well as in other alloy systems.  相似文献   
3.
New interrupted cooling experiments have been designed to study the kinetics of bainitic ferrite formation starting from a mixture of austenite and bainitic ferrite. It is found that the kinetics of bainitic ferrite formation during the cooling stage is determined by the isothermal holding time. The formation rate of bainitic ferrite at the beginning of the cooling decreases with increasing prior isothermal holding time. An unexpected stagnant stage during the cooling stage appears when the isothermal holding time increases to a critical point. There are two reasons for the occurrence of the stagnant stage: (i) a solute spike in front of the interface; and (ii) kinetic transition. A so-called Gibbs energy balance approach, in which the dissipation of Gibbs energy due to diffusion inside the interface and interface friction is assumed to be equal to the available chemical driving force, is applied to theoretically explain the stagnant stage. A kinetics transition from a fast growth mode without diffusion of Mn and Si inside the austenite–bainitic ferrite interfaces to a slow growth mode with diffusion inside the interface is predicted. The stagnant stage is caused by the transition to a slow growth mode. The Gibbs energy balance approach describes the experimental observations very well.  相似文献   
4.
In the present work a 3-D elastoplastic phase-field (PF) model is developed, based on the PF microelasticity theory proposed by A.G. Khachaturyan and by including plastic deformation as well as anisotropic elastic properties, for modeling the martensitic transformation (MT) by using the finite-element method. PF simulations in 3D are performed by considering different cases of MT occurring in an elastic material, with and without dilatation, and in an elastic perfectly plastic material with dilatation having isotropic as well as anisotropic elastic properties. As input data for the simulations the thermodynamic parameters corresponding to an Fe-0.3%C alloy as well as the physical parameters corresponding to steels acquired from experimental results are considered. The simulation results clearly show autocatalysis and morphological mirror image formation, which are some of the typical characteristics of a martensitic microstructure. The results indicate that elastic strain energy, anisotropic elastic properties, plasticity and the external clamping conditions affect MT as well as the microstructure.  相似文献   
5.
In the present work a multi-length scale model is developed to study both the athermal and stress-assisted martensitic transformations in a single crystal of 301 type stainless steel. The microstructure evolution is simulated using elastoplastic phase-field simulations in three dimensions. The input data for the simulations is acquired from a combination of computational techniques and experimental works. The driving force for the transformation is calculated by using the CALPHAD technique and the elastic constants of the body-centered cubic phase are calculated by using ab initio method. The other input data is acquired from experimental works. The simulated microstructures resemble a lath-type martensitic microstructure, which is in good agreement with the experimental results obtained for a stainless steel of similar composition. The martensite habit plane predicted by the model is in accordance with experimental results. The Magee effect, i.e. formation of favorable martensite variants depending on the loading conditions, is observed in the simulations. The results also indicate that anisotropic loading conditions give rise to a significant anisotropy in the martensitic microstructure.  相似文献   
6.
7.
Widmanstätten ferrite and bainitic ferrite are both acicular and their lengthening rate in binary Fe-C alloys and low-alloyed steels under isothermal conditions is studied by searching the literature and through new measurements. As a function of temperature, the lengthening rate can be represented by a common curve for both kinds of acicular ferrite in contrast to the separate C-curves often presented in time-temperature-transformation (TTT) diagrams. The curves for Fe-C alloys with low carbon content show no obvious decrease in rate at low temperatures down to 623 K (350 °C). For alloys with higher carbon content, the expected decrease of rate as a function of temperature below a nose was observed. An attempt to explain the absence of a nose for low carbon contents by an increasing deviation from local equilibrium at high growth rates is presented. This explanation is based on a simple kinetic model, which predicts that the growth rates for Fe-C alloys with less than 0.3 mass pct carbon are high enough at low temperatures to make the carbon pileup, in front of the advancing tip of a ferrite plate, shrink below atomic dimensions, starting at about 600 K (323 °C).  相似文献   
8.
In the present work, the size distribution and shape of WC grains in cemented carbides (WC–Co), with different Co contents, have been investigated in three dimensions. Direct three-dimensional (3-D) measurements, using focused ion beam serial sectioning and electron backscattered diffraction (EBSD), were performed and a 3-D microstructure was reconstructed. These measurements were supplemented by two-dimensional (2-D) EBSD and scanning electron microscopy on extracted WC grains. The data from 2-D EBSD collected on planar sections were transformed to three dimensions using a recently developed statistical method based on an iterative inverse Saltykov procedure. This stereological analysis revealed that the assumed spherical shape of WC grains during the Saltykov method is reasonable and the estimated 3-D size distribution is qualitatively in good agreement with the actual distribution measured from 3-D EBSD. Although the spherical assumption is generally fair, the WC grains have both faceted and rounded surfaces. This is a consequence of the relatively low amount of liquid phase during sintering, which makes impingements significant. Furthermore, the observed terraced surface structure of some WC grains suggests that 2-D nucleation is the chief coarsening mechanism to consider.  相似文献   
9.
The interphase precipitation in niobium steel has been investigated. In the present work, the austenite/ferrite transformation speed should be fast due to hot deformations, and interphase precipitation can be observed after 10 s isothermal holding in the temperature range 923–1023 K. The dominant interphase precipitation is planar and is not oriented on the {1 1 0}α plane suggested by the ledge mechanism but on other planes.  相似文献   
10.

Upper bainite forms in at least two stages, the formation of parallel plates of ferrite and the transformation of the interspaces to a mixture of cementite and ferrite. The first stage was examined in a preceding metallographic study of the formation of ferrite in hypoeutectoid steels and the second stage, which is initiated by the occurrence of cementite in the interspaces, is the subject of the present study. The alloy from the preceding study will also be used here. The band of austenite in the interspaces between parallel plates is generally transformed by a degenerate eutectoid transformation when this band is thin. When it is thicker, it will transform by a more cooperative growth mechanism and result in a eutectoid colony, often with cementite platelets. A series of sketches are presented which illustrate in detail how the second stage of upper bainite progresses according to the present observations. The cooperative manner did not increase as the temperature was lowered because the tendency to form plates of ferrite was still increasing at lower temperatures, making the interspaces too narrow for the cooperative reaction to dominate over the formation of fine plates of ferrite.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号