首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
工业技术   3篇
  2022年   1篇
  2018年   1篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 49 毫秒
1
1.
重金属离子对5052铝合金耐蚀性能的影响   总被引:1,自引:0,他引:1  
采用70℃脱氧人工海水模拟低温多效蒸馏海水淡化设备内部的特殊腐蚀环境,分析了不同含量的重金属Cu2+、Fe3+对5052铝合金腐蚀情况的影响。极化曲线结果表明,溶液中的微量重金属离子(10-9级)也会在铝合金表面沉积,使铝合金自腐蚀电位正移,但却不会破坏铝合金表面自然氧化膜,使点蚀电位保持不变。而腐蚀失重结果表明,随着溶液中氯离子对氧化膜的侵蚀、破坏,表面沉积金属与铝基体的耦合将加快铝合金腐蚀过程。  相似文献   
2.
为明确循环后高比能Li[Ni_(0.7)Co_(0.15)Mn_(0.15)]O_2/graphite锂离子动力电池的温度特性及产热机制。研究了循环前后电池的倍率放电性能和温度特性,并对比分析了循环前后影响电池产热的关键因素,即可逆反应热(熵热系数)和不可逆阻抗热(过电压)的变化。结果表明:与循环前电池的放电性能相比,循环后的电池放电容量和放电电压下降,放电初期电压下降显著,倍率放电性能变差;放电过程中温度的增加明显高于循环前电池,且温度的升高主要是放电初始阶段温度的升高;对比循环前后电池表面温度分布发现,放电初期循环前电池表面温度正极较高,循环后电池表面温度负极较高,放电结束时均为中心区域温度最高;电池的温度变化源于电池的可逆反应热和不可逆阻抗热,循环前后电池的可逆反应热变化不大,循环后电池在放电过程中温度显著增加的主要原因是由于放电初始阶段不可逆阻抗热的显著增大所造成的。  相似文献   
3.
随着电动汽车的发展,对电池能量密度提出了更高的要求,具有高能量密度的高镍/硅氧碳软包电池成为长续航电动汽车的首选,但是高镍/硅氧碳电池在实际使用中存在容量快速衰减的问题。采用无损电化学分析和事后拆解分析对循环过程中电池容量和内阻的变化进行检测,通过对比电池循环前后正负极结构、材料形貌和表面成分的变化,揭示高镍/硅氧碳电池循环失效机制。结果表明:电池容量衰减呈现平稳期、快速衰减期和急速衰减期3个阶段。循环后电池极化更加严重,电池极化内阻、负极表面膜阻抗和电荷转移阻抗明显增加。通过微分曲线分析结合拆解分析发现,高镍正极材料衰减较少,硅氧碳负极材料衰减和活性锂离子损失较多。硅氧颗粒膨胀开裂,负极活性物质损失,负极表面膜连续生长消耗过多的活性锂为电池容量快速衰减的主要原因。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号