首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23067篇
  免费   1916篇
  国内免费   920篇
工业技术   25903篇
  2024年   55篇
  2023年   317篇
  2022年   458篇
  2021年   718篇
  2020年   595篇
  2019年   521篇
  2018年   582篇
  2017年   714篇
  2016年   635篇
  2015年   860篇
  2014年   1000篇
  2013年   1293篇
  2012年   1386篇
  2011年   1483篇
  2010年   1215篇
  2009年   1203篇
  2008年   1231篇
  2007年   1163篇
  2006年   1275篇
  2005年   1205篇
  2004年   763篇
  2003年   715篇
  2002年   658篇
  2001年   574篇
  2000年   714篇
  1999年   780篇
  1998年   669篇
  1997年   581篇
  1996年   504篇
  1995年   470篇
  1994年   346篇
  1993年   256篇
  1992年   216篇
  1991年   175篇
  1990年   137篇
  1989年   120篇
  1988年   89篇
  1987年   48篇
  1986年   46篇
  1985年   43篇
  1984年   18篇
  1983年   4篇
  1982年   12篇
  1981年   14篇
  1980年   13篇
  1979年   9篇
  1978年   3篇
  1977年   3篇
  1976年   4篇
  1970年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
如何在互联网时代打造一个信息化的管理模式,已经成为广大学校图书管理发展过程中亟待处理的问题。文章就互联网时代下的高职图书管理信息化建设进行了详细探讨,以期能够给广大同仁提供一些借鉴参考,共同为图书管理工作的现代化改革和发展贡献力量。  相似文献   
2.
This article presents a state-space model with time-delay to map the relationship between known input-output data for discrete systems. For the given input-output data, a model identification algorithm combining parameter estimation and state estimation is proposed in line with the causality constraints. Consequently, this article proposes a least squares parameter estimation algorithm, and analyzes its convergence for the studied systems to prove that the parameter estimation errors converge to zero under the persistent excitation conditions. In control system design, the U-model based control is introduced to provide a unilateral platform to improve the design efficiency and generality. A simulation portfolio from modeling to control is provided with computational experiments to validate the derived results.  相似文献   
3.
Developing the thermal stability of metal-based ceramic composites or their films has always been challenging and bottlenecks for the utilization of energy. In this paper, the novel mesh-like functional Al doped-MoO3 nanocomposite film with even distribution and high purity was firstly fabricated by the high-efficiency electrophoretic deposition and surface modification. The optimal suspension turned out to be the mixture of isopropanol and the additives of polyethyleneimine and benzoic acid. The microtopography, crystalline structure, environmental resistance and thermal stability were analyzed by field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX), X-ray diffractometer (XRD), exposure and droplet-impacting test, DSC analysis and ignition test, respectively. The water contact angle and sliding angle of product can reach ~170° and <1°, indicating the excellent anti-wetting property. In addition, the high heat-release (~3180 J/g) of product all kept almost unchangeable after six months exposure experiments, demonstrating the outstanding thermostability. The exquisite design idea here can perfectly match microelectromechanical system (MEMS), providing the valuable reference for fabricating other metal-based high-energy composites with long lifespan for real industrial applications.  相似文献   
4.
Utilizing inner-crystal piezoelectric polarization charges to control carrier transport across a metal-semiconductor or semiconductor–semiconductor interface, piezotronic effect has great potential applications in smart micro/nano-electromechanical system (MEMS/NEMS), human-machine interfacing, and nanorobotics. However, current research on piezotronics has mainly focused on systems with only one or rather limited interfaces. Here, the statistical piezotronic effect is reported in ZnO bulk composited of nanoplatelets, of which the strain/stress-induced piezo-potential at the crystals’ interfaces can effectively gate the electrical transport of ZnO bulk. It is a statistical phenomenon of piezotronic modification of large numbers of interfaces, and the crystal orientation of inner ZnO nanoplatelets strongly influence the transport property of ZnO bulk. With optimum preferred orientation of ZnO nanoplatelets, the bulk exhibits an increased conductivity with decreasing stress at a high pressure range of 200–400 MPa, which has not been observed previously in bulk. A maximum sensitivity of 1.149 µS m−1 MPa−1 and a corresponding gauge factor of 467–589 have been achieved. As a statistical phenomenon of many piezotronic interfaces modulation, the proposed statistical piezotronic effect extends the connotation of piezotronics and promotes its practical applications in intelligent sensing.  相似文献   
5.
In this study, La was doped into the lithium layer of Li-rich cathode material and formed a layered-spinel hetero-structure. The morphology, crystal structure, element valence and kinetics of lithium ion migration were studied by field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The La doped lithium-rich cathode material exhibited similar initial discharge capacity of 262.8 mAh g?1 at 0.1 C compared with the undoped material, but the discharge capacity retention rate can be obviously improved to 90% after 50 cycles at 1.0 C. Besides that, much better rate capability and Li+ diffusion coefficient were observed. The results revealed that La doping not only stabilized the material structure and reduced the Li/Ni mixing degree, but also induced the generation of spinel phase to provide three-dimensional diffusion channels for lithium ion migration. Moreover, the porous structure of the doped samples also contributed to the remarkable excellent electrochemical performance. All of these factors combined to significantly improve the electrochemical performance of the material.  相似文献   
6.
Novel TiC-based composites were synthesized by reactive hot-pressing at 1800 °C for 1 h with ZrB2 addition as a sintering aid for the first time. The effects of ZrB2 contents on the phase composition, microstructure evolution, and mechanical properties were reported. Based on the reaction and solid solution coupling effects between ZrB2 and TiC, the product ZrC may be partially or completely dissolved into the TiC matrix, and then phase separation within the miscibility gap is observed to form lamellar nanostructured ZrC-rich (Zr, Ti)C. The TiC-10 mol.% ZrB2 (starting batch composition) exhibits good comprehensive mechanical properties of hardness 27.7 ± 1.3 GPa, flexural strength 659 ± 48 MPa, and fracture toughness of 6.5 ± 0.6 MPa m1/2, respectively, which reach or exceed most TiC-based composites using ceramics as sintering aids in the previous reports.  相似文献   
7.
Low-dimensional carbon nanostructures are ideal nanofillers to reinforce the mechanical performance of polymer nanocomposites due to their excellent mechanical properties. Through molecular dynamics simulations, the mechanical performance of poly(vinyl alchohol) (PVA) nanocomposites reinforced with a single-layer diamond – diamane is investigated. It is found the PVA/diamane exhibits similar interfacial strengths and pull-out characteristics with the PVA/bilayer-graphene counterpart. Specifically, when the nanofiller is fully embedded in the nanocomposite, it is unable to deform simultaneously with the PVA matrix due to the weak interfacial load transfer efficiency, thus the enhancement effect is not significant. In comparison, diamane can effectively promote the tensile properties of the nanocomposite when it has a laminated structure as it deforms simultaneously with the matrix. With this configuration, the interlayer sp3 bonds endows diamane with a much higher resistance under compression and shear tests, thus the nanocomposite can reach very high compressive and shear stress. Overall, enhancement on the mechanical interlocking at the interface as triggered by surface functionalization is only effective for the fully embedded nanofiller. This work provides a fundamental understanding of the mechanical properties of PVA nanocomposites reinforced by diamane, which can shed lights on the design and preparation of next generation high-performance nanocomposites.  相似文献   
8.
Abstract

Breast cancer is a common malignancy with poor prognosis. Cancer cells are heterogeneous and cancer stem cells (CSCs) are primarily responsible for tumor relapse, treatment-resistance and metastasis, so for breast cancer stem cells (BCSCs). Diets are known to be associated with carcinogenesis. Food-derived polyphenols are able to attenuate the formation and virulence of BCSCs, implying that these compounds and their analogs might be promising agents for preventing breast cancer. In the present review, we summarized the origin and surface markers of BCSCs and possible mechanisms responsible for the inhibitory effects of polyphenols on BCSCs. The suppressive effects of common dietary polyphenols against BCSCs, such as curcumin, epigallocatechin gallate (EGCG) and related polyphenolic compounds were further discussed.  相似文献   
9.
In the future, hydrogen will be an important energy carrier and industrial raw material. Catalytic steam reforming of bio-oils is a promising and economically viable technology for hydrogen production. However, during the reforming process, the catalysts are rapidly deactivated due to coke formation and sintering. Thus, maintaining the activity and stability of catalysts is the key issue in this process. Optimized operation conditions could extend the catalyst lifetime by affecting the coke morphology or promoting coke gasification. This article summarizes the recent developments in the field of catalytic steam reforming of bio-oils, focusing on the operation conditions, the properties of the catalysts, and the effects of the catalyst supports. The expected insights into the catalytic steam reforming of bio-oils will provide further guidance for hydrogen production from bio-oils.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号