首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
工业技术   5篇
  2023年   1篇
  2018年   1篇
  2016年   2篇
  2007年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Heteroatom-doped transition metal-oxides of high oxygen evolution reaction (OER) activities interfaced with metals of low hydrogen adsorption energy barrier for efficient hydrogen evolution reaction (HER) when uniformly embedded in a conductive nitrogen-doped carbon (NC) matrix, can mitigate the low-conductivity and high-agglomeration of metal-nanoparticles in carbon matrix and enhances their bifunctional activities. Thus, a 3D mesoporous heterostructure of boron (B)-doped cobalt-oxide/cobalt-metal nanohybrids embedded in NC and grown on a Ni foam substrate (B-CoO/Co@NC/NF) is developed as a binder-free bifunctional electrocatalyst for alkaline water-splitting via a post-synthetic modification of the metal–organic framework and subsequent annealing in different Ar/H2 gas ratios. B-CoO/Co@NC/NF prepared using 10% H2 gas (B-CoO/Co@NC/NF [10% H2]) shows the lowest HER overpotential (196 mV) and B-CoO/Co@NC/NF (Ar), developed in Ar, shows an OER overpotential of 307 mV at 10 mA cm−2 with excellent long-term durability for 100 h. The best anode and cathode electrocatalyst-based electrolyzer (B-CoO/Co@NC/NF (Ar)(+)//B-CoO/Co@NC/NF (10% H2)(−)) generates a current density of 10 mA cm−2 with only 1.62 V with long-term stability. Further, density functional theory investigations demonstrate the effect of B-doping on electronic structure and reaction mechanism of the electrocatalysts for optimal interaction with reaction intermediates for efficient alkaline water-splitting which corroborates the experimental results.  相似文献   
2.
3.
The behaviour of hydrogen during controlled industrial scale secondary steel making process has been examined in a variety of low alloy steels, sensitive to hydrogen flaking. The study examines the role played by the moisture in input raw materials such as the ferro-alloys, type of carbon additive and fluxes in enhancing the hydrogen content in the ladle furnace. Post alloying, the influence of vacuum degassing parameters such as the vacuum level, vacuum holding time, Ar flow rate, type of porous plug used, slag chemistry and the steel grade was examined. The vacuum degassing process was analysed using a kinetic model, which could justify the trends seen in the vacuum level, holding time and Ar gas flow rate. Finally, the hydrogen pick-up post vacuum degassing through slag cover and the casting tundish was found to be influenced by parameters such as the quality of the tundish spray mass, and casting sequence. The influence of steel grade in hydrogen removal was also examined.  相似文献   
4.
Physical delivery of anticancer drugs in controlled anatomic locations can complement the advances being made in chemo‐selective therapies. To this end, an optical fiber catheter is coated in a thin layer of metal organic framework UiO‐66 and the anticancer drug 5‐Fluorouracil (5‐FU) is deposited within the pores. Delivery of light of appropriate wavelength through the fiber catheter is found to trigger the release of 5‐FU on demand, offering a new route to localized drug administration. The system exhibits great potential with as much as 110 × 10?6 m of 5‐FU delivered within 1 min from one fiber.  相似文献   
5.
Developing and evolving today’s systems are often stymied by the sheer size and complexity of the capabilities being developed and integrated. At one end of the spectrum, we have sophisticated agent-based software with hundreds of thousands of collaborating nodes. These require modeling abstractions relevant to their complex workflow tasks as well as predictable transforms and mappings for the requisite elaborations and refinements that must be accomplished in composing these systems. At the other end of the spectrum, we have ever-increasing capabilities of reconfigurable hardware devices such as field-programmable gate arrays to support the emerging adaptability and flexibility needs of these systems. From a model-based engineering perspective, these challenges are very similar; both must move their abstraction and reuse levels up to meet growing productivity and quality objectives. Model-based engineering and software system variants such as the model-driven architecture (MDA) are increasingly being applied to systems development as the engineering community recognizes the benefits of managing complexity, separating key concerns, and automating transformations from high-level abstract requirements down through the implementation. However, there are challenges when it comes to establishing the correct boundaries for change-tolerant parts of the system. Capabilities engineering (CE) is a promising approach for defining long-lived components of a system to ensure some sense of change tolerance. For innovative initiatives such as the National Aeronautics and Space Administration (NASA)’s autonomous nanotechology swarms (ANTS), the development and subsequent evolution of such systems are of considerable importance as their missions involve complex, collaborative behaviors across distributed, reconfigurable satellites. In this paper, we investigate the intersection of these two technologies as they support the development of complex, change-tolerant systems. We present an effective approach for bounding computationally independent models so that, as they transition to the architecture, capabilities-based groupings of components are relevant to the change-tolerant properties that must convey in the design solution space. The model-based engineering approach is validated via a fully functional prototype and verified by generating nontrivial multiagent systems and reusing components in subsequent systems. We build off of this research completed on the collaborative agent architecture, discuss the CE approach for the transition to architecture, and then examine how this will be applied in the reconfigurable computing community with the new National Science Foundation Center for High-Performance Reconfigurable Computing. Based on this work and extrapolating from similar efforts, the model-based approach shows promise to reduce the complexities of software evolution and increase productivity—particularly as the model libraries are populated with canonical components.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号