首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
工业技术   14篇
  2023年   1篇
  2021年   5篇
  2019年   1篇
  2018年   1篇
  2011年   3篇
  2009年   1篇
  2007年   2篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
To achieve the stable dispersion of 1D van der Waals crystal Mo6S3I6 in aqueous media, the tri-block copolymer (Poloxamer) is used as dispersant. The head group of Poloxamer, hydrophobic polypropylene oxide parts can be adsorbed to Mo6S3I6 surface by hydrophobic interaction and the tail group with hydrophilic polyethylene oxide exposed to the outside of the Mo6S3I6 is soluble in water and can form sufficient steric hindrance, resulting in stable aqueous dispersion in nm scale. The excellent biocompatibility of aqueous dispersed nm scale 1D Mo6S3I6 was demonstrated by effective proliferation of C2C12 cells.  相似文献   
2.
Sangwan  Vinod K.  Kang  Joohoon  Lam  David  Gish  J. Tyler  Wells  Spencer A.  Luxa  Jan  Male  James P.  Snyder  G. Jeffrey  Sofer  Zdeněk  Hersam  Mark C. 《Nano Research》2021,14(6):1961-1966

Emerging layered semiconductors present multiple advantages for optoelectronic technologies including high carrier mobilities, strong light-matter interactions, and tunable optical absorption and emission. Here, metal-semiconductor-metal avalanche photodiodes (APDs) are fabricated from Bi2O2Se crystals, which consist of electrostatically bound [Bi2O2]2+ and [Se]2− layers. The resulting APDs possess an intrinsic carrier multiplication factor up to 400 at 7 K with a responsivity gain exceeding 3,000 A/W and bandwidth of ~ 400 kHz at a visible wavelength of 515.6 nm, ultimately resulting in a gain bandwidth product exceeding 1 GHz. Due to exceptionally low dark currents, Bi2O2Se APDs also yield high detectivities up to 4.6 × 1014 Jones. A systematic analysis of the photocurrent temperature and bias dependence reveals that the carrier multiplication process in Bi2O2Se APDs is consistent with a reverse biased Schottky diode model with a barrier height of ~ 44 meV, in contrast to the charge trapping extrinsic gain mechanism that dominates most layered semiconductor phototransistors. In this manner, layered Bi2O2Se APDs provide a unique platform that can be exploited in a diverse range of high-performance photodetector applications.

  相似文献   
3.
Memristive systems present a low-power alternative to silicon-based electronics for neuromorphic and in-memory computation. 2D materials have been increasingly explored for memristive applications due to their novel biomimetic functions, ultrathin geometry for ultimate scaling limits, and potential for fabricating large-area, flexible, and printed neuromorphic devices. While the switching mechanism in memristors based on single 2D nanosheets is similar to conventional oxide memristors, the switching mechanism in nanosheet composite films is complicated by the interplay of multiple physical processes and the inaccessibility of the active area in a two-terminal vertical geometry. Here, the authors report thermally activated memristors fabricated from percolating networks of diverse solution-processed 2D semiconductors including MoS2, ReS2, WS2, and InSe. The mechanisms underlying threshold switching and negative differential resistance are elucidated by designing large-area lateral memristors that allow the direct observation of filament and dendrite formation using in situ spatially resolved optical, chemical, and thermal analyses. The high switching ratios (up to 103) that are achieved at low fields (≈4 kV cm−1) are explained by thermally assisted electrical discharge that preferentially occurs at the sharp edges of 2D nanosheets. Overall, this work establishes percolating networks of solution-processed 2D semiconductors as a platform for neuromorphic architectures.  相似文献   
4.
Kim J  Crooks RM 《Analytical chemistry》2007,79(23):8994-8999
A new method for fabrication of RNA microarrays is described. The approach involves cohybridization of a short, biotinylated DNA oligonucleotide and an RNA probe sequence to DNA templates spotted onto a master array. Next, the short DNA sequence and the RNA probe are linked using a T4 DNA ligase. Finally, a poly(dimethylsiloxane) (PDMS) monolith modified on the surface with streptavidin is brought into conformal contact with the master array. This results in binding of the biotinylated DNA/RNA oligonucleotides to the PDMS surface. When the two substrates are mechanically separated, the DNA/RNA oligonucleotides transfer to the PDMS replica, and the DNA oligonucleotides remaining on the master array are ready to template another RNA replica array. This sequence can be repeated for at least 18 cycles using a single master array. RNA arrays consisting of up to three different oligonucleotide sequences and consisting of up to 2500 individual approximately 70 microm spots have been prepared.  相似文献   
5.
6.
7.
Journal of Mechanical Science and Technology - Sub-10 nm nanostructures have received broad interest for their intriguing nano-optical phenomena, such as extreme field localization and enhancement,...  相似文献   
8.
9.
The imperfect interfaces between 2D transition metal dichalcogenides (TMDs) are suitable for boosting the hydrogen evolution reaction (HER) during water electrolysis. Here, the improved catalytic activity at the spatial heterojunction between 1T’ RexMo1−xS2 and 2H MoS2 is reported. Atomic-scale electron microscopy confirms that the heterojunction is constructed by an in-situ two-step growth process through chemical vapor deposition. Electrochemical microcell measurements demonstrate that the 1T’ RexMo1−xS2–2H MoS2 lateral heterojunction exhibits the best HER catalytic performance among all TMD catalysts with an overpotential of ≈84 mV at 10 mA cm−2 current density and 58 mV dec−1 Tafel slope. Kelvin probe force microscopy shows ≈40 meV as the work function difference between 2H MoS2 and 1T’ RexMo1−xS2, facilitating the electron transfer from 2H MoS2 to 1T’ RexMo1−xS2 at the heterojunction. First-principles calculations reveal that Mo-rich heterojunctions with high structural stability are formed, and the HER performance is improved with the combination of increased density of states near the Fermi level and optimal ΔGH* as low as 0.07 eV. Those synergetic effects with many electrons and active sites with optimal ΔGH* improve HER performance at the heterojunction. These results provide new insights into understanding the role of the heterojunction for HER.  相似文献   
10.
A vibrotactile interface is an actuator device to convey haptic information intuitively from electronics to users. For the next‐generation of user‐friendly interface applications, the vibrotactile actuator is required to be vibration intensity/frequency controllable, mechanically stable, transparent, and have large scalability. Previously, although these requirements are satisfied via several approaches using a random network film of Ag wires or a mixture with conductive polymers, the random‐network‐based materials only have limited control on material density and uniformity, which in turn hinders precise control over vibration intensity and device transparency. Here, a new approach to assemble large‐scale Ag microwire arrays is demonstrated by involving an evaporative assembly method and is presented to overcome the current limitations. In particular, the 1D wavy structure derived from fractal designs promotes vibration intensity and cycling due to greater areal coverage and improved mechanical stability. Furthermore, by taking advantage of the precisely aligned microwires array, tunable multimode vibration frequencies are obtained by generating two different voltage frequencies. The large‐scale wavy Ag microwire array with precise spatial controllability will be directly adaptable as a user‐friendly interface in electronic applications like wearable devices, computer interfaces, and flexible mobile phones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号