首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   7篇
工业技术   11篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2018年   4篇
  2013年   1篇
  2008年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
The fluid catalytic cracking (FCC) technology is one of the pillars of the modern petroleum industry which converts the crude oil fractions into many commodity fuels and platform chemicals, such as gasoline. Although the FCC field is quite mature, the research scope is still enormous due to changing FCC feedstock, gradual shifts in market demands and evolved unit operations. In this review, we have described the current status of FCC technology, such as variation in the present day feedstocks and catalysts, and particularly, great attention is paid to the effects of various contaminants of the FCC catalysts of which the latter part has not been sufficiently documented and analyzed in the literature yet. Deposition of various contaminants on cracking catalyst during FCC process, including metals, sulfur, nitrogen and coke originated from feedstocks or generated during FCC reaction constitutes a source of concern to the petroleum refiners from both economic and technological perspectives. It causes not only undesirable effects on the catalysts themselves, but also reduction in catalytic activity and changes in product distribution of the FCC reactions, translating into economic losses. The metal contaminants (vanadium (V), nickel (Ni), iron (Fe) and sodium (Na)) have the most adverse effects that can seriously influence the catalyst structure and performance. Although nitrogen and sulfur are considered less harmful compared to the metal contaminants, it is shown that pore blockage by the coking effect of sulfur and acid sites neutralization by nitrogen are serious problems too. Most recent studies on the deactivation of FCC catalysts at single particle level have provided an in-depth understanding of the deactivation mechanisms. This work will provide the readers with a comprehensive understanding of the current status, related problems and most recent progress made in the FCC technology, and also will deepen insights into the catalyst deactivation mechanisms caused by contaminants and the possible technical approaches to controlling catalyst deactivation problems.  相似文献   
2.
The effect of deformation behavior on the in vitro corrosion rate of Mg-2Zn-0.5Nd alloy was investigated experimentally after uniaxial tensile and compressive stress.The microstructure and texture were characterized using electron backscattered diffraction and X-ray diffraction,while potentiodynamic polarization and immersion tests were used to investigate the cor-rosion response after deformation.The result reveals that applied compressive stress has more dominant effect on the corro-sion rate of Mg-2Zn-0.5Nd alloy as compared to tensile stress.Both tensile and compressive strains introduce dislocation slip and deformation twins in the alloy,thereby accelerating the corrosion rate due to the increased stress corrosion related to dislocation slips and deformation twins.The { 10(1)2} tension twinning and prismatic slip were the major contributors to tensile deformation while basal slip,and { 10(1)2} tension twin were obtainable during compressive deformation.The twinning activity after deformation increases with the plastic strain and this correlates with the degradation rate.  相似文献   
3.
Specimens of carbon steel (CS) and stainless steel (SS) 316 was joined together by double sided butt joint Friction Stir Welding method. Effect of the tool rotational speed and specimen preheat temperature on resultant microstructure and mechanical behavior was studied. Constant traveling speed of 100 mm/min, tool rotational speed of 500 and 1000 rpm in combination with preheat temperature of 50 and 100 °C was employed for this study. No sign of root crack was observed in all specimens. Optical microscopy identified four distinct zones characterized as the stir zone, thermal mechanically affected zone (TMAZ) in both SS and CS specimen, and heat affected zone (HAZ) in CS specimen. No HAZ in SS was observed. Scanning electron microscopy revealed formation of a thin void layer on several locations at the boundary between the TMAZ and the re-oriented region of SS side, while on the CS side no voids were identified. The grain size on the TMAZ of CS was observed to be smaller compared to the HAZ region. No sign of root crack was observed in all specimens. The specimens were subjected to U bend. Specimens joined with 1000 rpm rotational speed developed a brittle behavior and failed in U bend test. The extent of the crack and brittleness was proportional to the applied preheat. U bent specimens from 500 rpm rotation demonstrated a good stress corrosion cracking behavior in 30,000 ppm solution of sodium chloride (NaCl).  相似文献   
4.
5.
An experimental model for simulating the corrosion of carbon steel fasteners (bolt and nut) composed of a contact carbon steel electrode (CCSE) and an exposed bare carbon steel plate electrode (BCSE) was designed. The effect of coupling on the corrosion process of the galvanically coupled carbon steel electrode was evaluated and compared with the self-corrosion process observed independently at the exposed and contact regions. Results obtained indicated that at an equal area ratio and uncoupled conditions, the corrosion rate is accelerated in the surface directly exposed to bulk solution compared to the bolt surface in contact with the nut. A coupling current was recorded when the exposed surface (BCSE) was electrically connected with the contact surface (CCSE); with the CCSE acting as the anode thereby suppressing the corrosion process in the exposed surface. By implication, the galvanic coupling between CCSE and BCSE increased the corrosion rate of CCSE. The difference in oxygen supply was responsible for the coupling effect observed in the system as there was no decrease in the solution pH. Moreover, varying the cathode-to-anode area (Sc/Sa) ratio significantly influenced the corrosion current density as increased Sc/Sa ratio resulted in an accelerated galvanic corrosion process. The corroded surfaces and interfaces were analysed using stereomicroscopy and scanning electron microscopy. X-ray diffractometry was adopted for corrosion product characterization. The results obtained showed supportive evidence of the corrosion behaviour in carbon steel fasteners.  相似文献   
6.
The effect of residual dissolved oxygen(DO)on the corrosion behavior of carbon steel in 0.1 M Na HCO_3solution was investigated by electrochemical measurements,corrosion mass loss test,scanning electron microscopy(SEM)and X-ray diffraction(XRD).In the initial immersion stage,the increase of the dissolved oxygen concentration led to the change of from a reductive state of active dissolution to an oxidizing state of pseudo passivation in low carbon steel.While in the final stage,all the steels transformed into the steady state of pseudo passivation.In the anaerobic solution,the formation ofα-Fe OOH was attributed to the chemical oxidization of the ferrous corrosion products and the final cathodic process only included the reduction ofα-Fe OOH,while in the aerobic solution,it included the reduction of oxygen andα-Fe OOH simultaneously.As the main corrosion products,the content ofα-Fe OOH was increased while that of Fe_6(OH)_(12)CO_3was decreased with increasing concentration of dissolved oxygen.The total corrosion mass loss of the steel was promoted with the increase of dissolved oxygen concentration.  相似文献   
7.
AZ31 magnesium (Mg) alloy was potentiostatic polarized in 0.1?M deaerated KF solution with pH 7.5 from ?0.4?V to ?1.4?V with an interval of ?0.2?V. The polarization process was described by the potentiostatic current decay. The resultant film was analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The results demonstrated that the deposited film included a Mg(OH)2/MgF2 containing inner layer and a Mg(OH)2/MgF2/KMgF3 comprising outer layer. The high polarized potential produced high content of MgF2 but low content of KMgF3 and thin film. Conversely, the low polarized potential produced small content of MgF2 but high content of KMgF3 and thick film. The optimal corrosion resistance of the deposited film was obtained at ?1.4?V, which was closely related with the content of MgF2 and KMgF3 and the film thickness.  相似文献   
8.
The corrosion damage of 20 SiMn steel by sulphate-reducing bacteria(SRB)and the mitigation effect of organic silicon quaternary ammonium salt(OSA)were studied in sterilized mild alkaline simulated concrete pore solution(STR)with different additions of SRB and OSA at pH 9.35 for 28 days.Uniform corrosion occurs in STR medium while slight localized corrosion is observed in STR+OSA medium,and localized pitting corrosion occurs in STR+SRB and STR+SRB+OSA media.The largest pit depth reduces from 36.70μm in STR+SRB medium to 3.31μm in STR+SRB+OSA medium due to the mitigation effect of OSA.The corrosion rate reflected by weight loss and electrochemical impedance spectroscopy(EIS)results presents the order of STR相似文献   
9.
The effect of addingd-fructose to simulated body fluid(SBF) on the corrosion behavior of AZ31 magnesium(Mg) alloy at 37.C and at a pH of 7.4 was studied by potentiodynamic polarization(PDP), electrochemical impedance spectroscopy(EIS), potentiostatic polarization and hydrogen(H2) collecting techniques,Raman spectroscopy technique, scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), X-ray diffraction(XRD), X-ray photoelectron spectroscopy analysis(XPS) and Fourier transformed infrared(FTIR). The results demonstrated that the addition of fructose enhanced the deposition of phosphates forming thick and compact corrosion products, which inhibited the transmission of aggressive ions into the Mg substrate. As a result, both the anodic dissolution of Mg and negative difference effect(NDE) were suppressed. Thus, the corrosion resistance of AZ31 Mgalloy in SBF was significantly improved.  相似文献   
10.
Magnesium alloys have been investigated as biodegradable implant materials since the last century. Non-uniform degradation caused by local corrosion limits their application, and no appropriate technology has been used in the research. In this study, electrochemical noise has been used to study the pit corrosion on magnesium alloy AZ31 in four types of simulated body solutions, and the data have been analyzed using wavelet analysis and stochastic theory. Combining these with the conventional polarization curves, mass loss tests and scanning electron microscopy, the electrochemical noise results implied that AZ31 alloy in normal saline has the fastest corrosion rate, a high pit initiation rate, and maximum pit growth probability. In Hanks’ balanced salt solution and phosphate-buffered saline, AZ31 alloy has a high pit initiation rate and larger pit growth probability, while in simulated body fluid, AZ31 alloy has the slowest corrosion rate, lowest pit initiation rate and smallest pit growth probability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号