首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
工业技术   11篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2012年   4篇
  2011年   3篇
  2003年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
This work is focused on investigation of thermal, structural, optical, magnetic, and magneto-optical properties of novel titanium phosphate-tellurite glass applied as Faraday rotators. The glass belonging to the system 35Li2O–10Al2O3–5TiO2–45P2O5–5TeO2 was prepared by a nonconventional wet route of raw materials processing, followed by melting-quenching-annealing steps. Some important physical properties of the investigated glass have been measured and calculated, providing knowledge related to glass compactness, electronic structure, glass forming capability, etc. XRD analysis evidenced an amorphous network structure of the investigated glass. The optical absorption in the Vis domain is mainly due to Ti3+ ions and Te2 clusters formed during the glass melting process. A relatively low optical absorption is noticed over 600 nm that activates a significant Faraday magneto-optical effect. Photoluminescence bands in the blue, red, and infrared domains are observed, caused by Te2 clusters formed during the glass melting process. The magnetization in dependency on applied magnetic field reveals a complex behavior of the glass, depending on temperature. Thus, it is found a ferromagnetic behavior up to 2000 Oe, a paramagnetic component up to 40 000 Oe, followed by a diamagnetic one over 40 000 Oe. Faraday rotation angle and Verdet constant values in the visible domain are correlated with the reduced TeO2 content of the glass.  相似文献   
2.
Epitaxial growth of Bi1.5-xZn0.92-yNb1.5O6.92-1.5x-y (BZN) thin films was achieved on (100)pc LaAlO3 substrate by pulsed laser deposition (PLD) and by chemical solution deposition based on Pechini process. Effect of bismuth and zinc deficiency on the BZN thin films obtained by PLD was discussed, in relation with the starting target composition. Dielectric permittivity and bandgap values were determined from electrical and spectroscopic ellipsometry measurements performed on randomly oriented films grown on Pt/Si substrate. BZN thin films obtained by PLD exhibit, at 100 kHz, a dielectric constant of εr = 203 and quite low dielectric losses of tanδ = 5 × 10− 2. Epitaxial ferroelectric − dielectric KTa0.65Nb0.35O3 (KTN) − Bi1.5-xZn0.92-yNb1.5O6.92-1.5x-y (KTN on BZN and BZN on KTN) bilayers were obtained by PLD on (100)pc LaAlO3 with the insertion of a suitable buffer layer of KNbO3 in the case of KTN on BZN. Such multilayer heterostructures with an epitaxial growth control of each layer are promising candidates for potential integration in microwave devices.  相似文献   
3.
We present here results on samarium oxide thin films, obtained by pulsed laser deposition and by radio frequency assisted pulsed laser deposition. Three different substrate types were used: silicon, platinum covered silicon and titanium covered silicon. The influence of the deposition parameters (oxygen pressure and laser fluence) on the structure and morphology of the thin films was studied. The substrate-thin film interface zone was investigated; the optical and electrical properties (the losses, dielectric constant and leakage currents) were also determined.  相似文献   
4.
0.89(Na0.5Bi0.5)TiO3–0.11BaTiO3, (BNT-BT0.11) thin film was fabricated by sol–gel/spin coating process, on platinized silicon wafer. Perovskite structure with random orientation of crystallites has been obtained at 700 °C. Piezoelectric activity of BNT-BT0.11 thin film was detected using piezoresponse force microscopy (PFM). Effective piezoelectric coefficient d 33eff of such film, recorded at 5 V applied dc voltage, was ~29 pm/V, which is similar to other BNT-BT x thin films. The complex refractive index and dielectric function of BNT-BT0.11 thin films were also investigated. The high leakage current density significantly influences the dielectric, ferroelectric, and piezoelectric properties of the BNT-BT0.11 films.  相似文献   
5.
The paper presents the optical properties of amorphous-like indium zinc oxide and indium gallium zinc oxide thin films with various In/(In + Zn) ratios obtained by Pulsed Laser Deposition. Thickness results obtained from simulations of X-ray Reflectivity and Spectroscopic Ellipsometry data were very similar. The dependence of density on stoichiometry resembles the corresponding dependence of the refractive index in the transparency range. A free carrier absorption was noted in the visible spectral range, leading to a weak absorbing thin transparent conductive oxide. On the other hand, the refractive index is smaller than those of based oxides (ZnO and In2O3), and counterbalance therefore the weak light absorption.  相似文献   
6.
Thin films with the composition [(Bi0.5Na0.5)TiO3]0.92–[BaTiO3]0.08 (hereafter BNT–BT0.08) were deposited on Pt–Si by spin-coating from a stable sol precursor. The BNT–BT0.08 film, crystallized on the Bi0.5Na0.5TiO3 rhombohedral lattice, was obtained after annealing the film-gel at 700 °C. The films have a smooth surface (Rms = 2.76 nm) and grains with ferroelectric domains. The film showed a bandgap of 3.25 eV and a refractive index of 2.20 at a wavelength of 630 nm. The dielectric characteristics of BNT–BT0.08 thin films were measured at room temperature and 10 kHz the dielectric constant (ε r) was 243 and the loss tangent (tanδ) was 0.38. The remnant polarization (P r) was 0.87 μC/cm2 and the coercive field (E c) was 220 kV/cm at 10 kHz and room temperature. The current density was approximately 2.7 × 10−5 A/cm2 at low electric fields (100 kV/cm). BNT–BT0.08 thin films shown piezoelectric properties (d 33eff = 100 pm/V) comparable to those of PZT thin films.  相似文献   
7.
Indium zinc oxide films were grown from targets with two different In atomic concentration [In/(In + Zn)] of 40% and 80% by the pulsed laser deposition technique on glass substrates from room temperature up to 100 °C. X-ray diffraction and reflectometry investigations showed that films were amorphous and dense. Thin films (thickness < 100 nm) exhibited higher optical transmittance and resistivities than thick films (thickness > 1000 nm), probably caused by a significant decrease of oxygen vacancies due to atmosphere exposure. Films deposited from the In rich target under an oxygen pressure of 1 Pa exhibited optical transmittance higher than 85%, resistivities around 5- 7 × 10− 4 Ω cm and mobilities in the 47-54 cm2/V s range.  相似文献   
8.

This paper reports the synthesis and characterization of Cu2ZnSnS4 (CZTS) absorber films, prepared by a two-step electrodeposition of a ZnS (zinc sulfide) binary and a CZT (copper, zinc and tin) ternary precursors on Mo/Ti/Si substrates. The as-electrodeposited ZnS/CZT and CZT/ZnS stacks were thermally treated in a tubular furnace in sulfur environment at 550 °C. The role of the ZnS buffer layer is to provide a zinc and sulfur reservoir, needed to complete the formation of kesterite phase. X-ray diffraction and Raman analyses revealed the formation of the CZTS phase. The surface morphology and chemical composition of the films were studied using a scanning electron microscope. The bandgap values inferred from diffuse reflectance data, are discussed with respect to the stoichiometry which is considerably affected by the order of the stacks. Room-temperature photoluminescence of the CZT/ZnS sample showed a board PL band of 1.51 eV. It was found that the film with a ZnS layer on top is preferred for the formation of a Zn-rich single CZTS phase.

  相似文献   
9.
New magneto-optical vitreous materials were obtained by melting-quenching technique comprising wet route raw materials preparation. The glass has the following composition in oxide mol. %: 10 Li2O, 9 Al2O3, 5 ZnO, (35; 20; 50) B2O3, (35; 50; 20) P2O5, 3 Bi2O3, 3 PbO, phosphorus and boron oxide being the vitreous network formers. It was also prepared a similar reference glass composition but without Bi2O3 and PbO. Optical and structural characterization by ultraviolet-visible (UV–Vis), Fourier Transform Infrared (FTIR) and Raman Spectroscopy of the bulk glasses showed a transmission over 90%, metaphosphate structure of glass together with Q2 boron oxide units and P–O?B bonds. The mechanical parameters, hardness (H), Young's modulus (E) and fracture toughness (KIC) of boron phosphate glasses, evaluated by micro- and nanoindentation techniques, demonstrated mostly higher values in comparison with those for alumino-phosphate glasses due to mixed boro-phosphate network. Thermal behavior was investigated by Differential Scanning Calorimetry (DSC) putting in evidence the vitreous transition temperature which decreases with about 45 °C when Bi and Pb oxides were added and two crystallization effects. The diamagnetic character of a highly transparent Bi and Pb oxide co-doped boron phosphate glass was confirmed by ellipsometry, and the glass presented high magneto-optical properties at the top of the commercial bulk products.  相似文献   
10.
Wavelet coding of volumetric medical datasets   总被引:1,自引:0,他引:1  
Several techniques based on the three-dimensional (3-D) discrete cosine transform (DCT) have been proposed for volumetric data coding. These techniques fail to provide lossless coding coupled with quality and resolution scalability, which is a significant drawback for medical applications. This paper gives an overview of several state-of-the-art 3-D wavelet coders that do meet these requirements and proposes new compression methods exploiting the quadtree and block-based coding concepts, layered zero-coding principles, and context-based arithmetic coding. Additionally, a new 3-D DCT-based coding scheme is designed and used for benchmarking. The proposed wavelet-based coding algorithms produce embedded data streams that can be decoded up to the lossless level and support the desired set of functionality constraints. Moreover, objective and subjective quality evaluation on various medical volumetric datasets shows that the proposed algorithms provide competitive lossy and lossless compression results when compared with the state-of-the-art.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号