首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   10篇
  国内免费   4篇
工业技术   59篇
  2024年   2篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   7篇
  2016年   4篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2012年   8篇
  2011年   2篇
  2010年   4篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有59条查询结果,搜索用时 921 毫秒
1.
Yang  Xi  Gao  Ling  Guo  Qing  Li  Yongjiang  Ma  Yue  Yang  Ju  Gong  Changyang  Yi  Cheng 《Nano Research》2020,13(10):2579-2594

Over the past decade, numerous studies have attempted to enhance the effectiveness of radiotherapy (external beam radiotherapy and internal radioisotope therapy) for cancer treatment. However, the low radiation absorption coefficient and radiation resistance of tumors remain major critical challenges for radiotherapy in the clinic. With the development of nanomedicine, nanomaterials in combination with radiotherapy offer the possibility to improve the efficiency of radiotherapy in tumors. Nanomaterials act not only as radiosensitizers to enhance radiation energy, but also as nanocarriers to deliver therapeutic units in combating radiation resistance. In this review, we discuss opportunities for a synergistic cancer therapy by combining radiotherapy based on nanomaterials designed for chemotherapy, photodynamic therapy, photothermal therapy, gas therapy, genetic therapy, and immunotherapy. We highlight how nanomaterials can be utilized to amplify antitumor radiation responses and describe cooperative enhancement interactions among these synergistic therapies. Moreover, the potential challenges and future prospects of radio-based nanomedicine to maximize their synergistic efficiency for cancer treatment are identified.

  相似文献   
2.
采用电沉积法和浸渍法制备了氧化锡/多壁碳纳米管(SnO_2/MWCNTs)复合材料,并首次将其应用在海底沉积物微生物燃料电池(MSMFCs)的阳极改性,测试分析SnO_2/MWCNTs改性阳极的电化学性能和由其组成的电池性能。结果表明,SnO_2/MWCNTs复合阳极的氧化还原电化学活性和电子转移动力学活性分别是空白组的28.26倍和983.7倍;电容性能是空白组的43.14倍;阳极电荷转移电阻约是空白组的1/4。复合改性阳极组MSMFCs的最大功率密度(1 085.1 m W/m2)是空白组的2.17倍。机理分析表明,MWCNTs提高了阳极的导电性,SnO_2使氧化还原反应更容易进行,阳极的电容性能增加;在特殊的海洋弱碱条件下,SnO_2和MWCNTs的增强协同作用使复合改性阳极表现出更加优异的性能。  相似文献   
3.
通过对重钢焦化厂焦化配煤煤种进行特性检测,小焦炉配煤试验,焦炭热性能检测试验及焦炭微晶结构分析,研究澳媒对焦炭热性能的影响。结果表明,澳煤的技术指标接近焦煤,在配煤方案中可代替部分肥煤或焦煤。配入20%左右的澳煤,相应降低肥煤和焦煤配入比例所得到的焦炭其热性能较稳定。  相似文献   
4.
Adult zebrafish is a well-known small animal model for studying heart regeneration. Although the regeneration of scars made by resecting the ventricular apex has been visualized with histological methods, there is no adequate imaging tool for tracking the functional recovery of the damaged heart. For this reason, high-frequency Doppler echocardiography using dual mode pulsed wave Doppler, which provides both tissue Doppler (TD) and Doppler flow in a same cardiac cycle, is developed with a 30 MHz high-frequency array ultrasound imaging system. Phantom studies show that the Doppler flow mode of the dual mode is capable of measuring the flow velocity from 0.1 to 15 cm s−1 with high accuracy (p-value = 0.974 > 0.05). In the in vivo study of zebrafish, both TD and Doppler flow signals were simultaneously obtained from the zebrafish heart for the first time, and the synchronized valve motions with the blood flow signals were identified. In the longitudinal study on the zebrafish heart regeneration, the parameters for diagnosing the diastolic dysfunction, for example, E/Em < 10, E/A < 0.14 for wild-type zebrafish, were measured, and the type of diastolic dysfunction caused by the amputation was found to be similar to the restrictive filling. The diastolic function was fully recovered within four weeks post-amputation.  相似文献   
5.
The purpose of this study is to improve the bone-bonding ability between titanium implants and living bone through the control of geometric design and chemical compositions of an implant surface. We compared the tissue healing response and resulting implant stability for three surface designs by characterizing the histological and mechanical properties of the healing tissue around smooth-surfaced Ti–6Al–4V (SS), CP-Ti plasma-spray-coated (PSC), alkali- and heat-treated (AHT) implants. The implants were transversely inserted into a dog thighbone and evaluated at 4, 8, and 12 weeks. Histological examination indicated that initial matrix mineralization leading to osseointegration occurred more rapidly with the AHT implant. During the 4, 8, and 12 week healing periods, new bone on the surface of AHT implant showed denser growth than that on the SS and PSC implants. The more extensive tissue integration and more rapid matrix mineralization with the AHT implant were reflected in the mechanical test data, which demonstrated superior attachment strength and interfacial stiffness for the AHT implant after healing for 4, 8 and 12 weeks of healing because of the mechanical interlocking in the micrometer sized rough surface and the large bonding area between bone and implant caused by the nanosized porous surface structure. Histological and mechanical data demonstrate that with the appropriate surface design selection, bone bone-bonding ability can be improved and can induce acceleration of the healing response, thereby improving the potential for implant osseointegration.  相似文献   
6.
本文针对司显柱翻译评估模式中的"宏观审视"层面,探讨了以盖然率为工具进行"微观偏离"宏观审视和"宏观偏离"梳理的可能性,并加以实例验证.同时认为,借助盖然率工具可以使这一模式更具可操作性.  相似文献   
7.
8.
Targeting apoptotic pathways in tumor cells is recognized as a potent anticancer strategy. However, monotherapies that target a single apoptotic pathway often do not meet expectations and the nonspecific and uncontrolled activation of apoptotic pathways can overshadow potential application prospects. Here, a novel tumor-microenvironment-activated nano-artificial virus (TMAN) with hierarchically responsive capacity is fabricated and loaded with the plasmid encoding tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and mitochondria-targeted red fluorescent phototoxic protein (KillerRed) simultaneously for precise and controllable exogenous and endogenous apoptosis coactivation. The inert TMAN is endowed with in vivo longevity and undergoes orderly acidity-triggered deshielding of a masking layer, enzyme-responsive charge-reversal, and oxidative stress-sensitive structural fragmentation in the tumor extra/intracellular microenvironment to exert precise tumor recognition, deep penetration, cellular internalization, rapid endosomes escape, and effective gene release ability, leading to the effective and tumor-specific delivery of payloads. Given the virtues of TMAN, a favorable collaboration of TRAIL-triggered exogenous apoptosis and mitochondria-targeted KillerRed induced endogenous apoptosis is achieved synchronously under the control of light irradiation, thus remarkably improving antitumor efficacy with minimal toxicity. Taken together, this strategy highlights the significance of exogenous and endogenous apoptosis coactivation in cancer treatments and offers a promising paradigm for precise exo/endogenous dual-augmented antitumor therapy.  相似文献   
9.
 为研究复合支护中钢拱架变形特性和力学机制,优化支护参数,保证引水洞室的稳定性,在对支护结构进行力学分析的基础上,采用数值计算方法对山西引水工程中施工支洞进行了仿真模拟。基于复合支护力学作用机制的研究,分析钢拱架在初期支护中的应力及变形特性,并结合工程实例研究复合支护中钢拱架、钢筋网以及喷层所分担的围岩压力比例。数值计算表明:与普通的喷锚支护相比,有钢拱架的复合支护体系能够对围岩变形提供直接支护力,使围岩初期变形和塑性区范围大大减小,有利于围岩承载拱的形成并发挥其自身承载能力,同时其他各支护材料的变形和应力也有较大程度的降低,是洞室破碎围岩支护的有效手段之一。研究成果为山西省中部引黄工程引水洞支护设计提供了理论依据,对同类工程也具有借鉴和指导意义。  相似文献   
10.
N Lei  C Gong  Z Qian  F Luo  C Wang  H Wang  Y Wei 《Nanoscale》2012,4(18):5686-5693
Many drug delivery systems (DDSs) have been investigated for local targeting of malignant disease with the intention of increasing anti-tumor activity and minimizing systemic toxicity. An injectable thermosensitive hydrogel was applied to prevent locoregional recurrence of 4T1 breast cancer in a mouse model. The presented hydrogel, which is based on poly(ethyleneglycol)-poly(ε-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE), flows freely at normal temperature, forms a gel within seconds in situ at body temperature, and eventually releases the drug in a consistent and sustained fashion as it gradually biodegrades. Locoregional recurrence after primary tumor removal was significantly inhibited in mice treated with the paclitaxel (PTX)-loaded PECE hydrogel subcutaneously (9.1%) administered, compared with the blank hydrogel (80.0%), systemic (77.8%) and locally (75.0%) administered PTX, and the control group (100%) (P < 0.01). In addition, tensile strength measurements of the surgical incisions showed that the PECE hydrogel accelerates wound healing at postoperative day 7 (P < 0.05), and days 4 and 14 (P > 0.05), in agreement with histopathological examinations. This novel DDSs represents a promising approach for local adjuvant therapy in malignant disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号