首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   3篇
工业技术   20篇
  2020年   3篇
  2019年   2篇
  2017年   2篇
  2016年   1篇
  2012年   7篇
  2011年   3篇
  1994年   1篇
  1985年   1篇
排序方式: 共有20条查询结果,搜索用时 24 毫秒
1.
2.
Beyond their colorful appearances and versatile geometries, flowers can self‐shape‐morph by adapting to environmental changes. Such responses are often regulated by a delicate interplay between different stimuli such as temperature, light, and humidity, giving rise to the beauty and complexity of the plant kingdom. Nature inspires scientists to realize artificial systems that mimic their natural counterparts in function, flexibility, and adaptation. Yet, many of the artificial systems demonstrated to date fail to mimic the adaptive functions, due to the lack of multi‐responsivity and sophisticated control over deformation directionality. Herein, a new class of liquid‐crystal‐network (LCN) photoactuators whose response is controlled by delicate interplay between light and humidity is presented. Using a novel deformation mechanism in LCNs, humidity‐gated photoactuation, an artificial nocturnal flower is devised that is closed under daylight conditions when the humidity level is low and/or the light level is high, while it opens in the dark when the humidity level is high. The humidity‐gated photoactuators can be fueled with lower light intensities than conventional photothermal LCN actuators. This, combined with facile control over the speed, geometry, and directionality of movements, renders the “nocturnal actuator” promising for smart and adaptive bioinspired microrobotics.  相似文献   
3.
4.
E. Arri  R. Perissi 《Measurement》1985,3(3):125-129
The circulation of travelling standards (audit) is certainly the most effective means to obtain a thorough evaluation on references, methods and staff of the Centres of a Calibration Service. To reach useful results, an audit must be organised very accurately. The fundamental criteria for its organisation are discussed: uncertainty level; travelling standards; circulation type; circulation period; documents for Customs; devices for transport; means of transport; measurement conditions; data treatment; final result analysis.  相似文献   
5.
It is demonstrated that halogen bonding can be used to construct low‐molecular‐weight supramolecular complexes with unique light‐responsive properties. In particular, halogen bonding drives the formation of a photoresponsive liquid‐crystalline complex between a non‐mesogenic halogen bond‐donor molecule incorporating an azo group, and a non‐mesogenic alkoxystilbazole moiety, acting as a halogen bond‐acceptor. Upon irradiation with polarized light, the complex exhibits a high degree of photoinduced anisotropy (order parameter of molecular alignment > 0.5). Moreover, efficient photoinduced surface‐relief‐grating (SRG) formation occurs upon irradiation with a light interference pattern, with a surface‐modulation depth 2.4 times the initial film thickness. This is the first report on a halogen‐bonded photoresponsive low‐molecular‐weight complex, which furthermore combines a high degree of photoalignment and extremely efficient SRG formation in a unique way. This study highlights the potential of halogen bonding as a new tool for the rational design of high‐performance photoresponsive suprastructures.  相似文献   
6.
7.
The purpose of this work is to generalize part of the theory behind Faugère’s “F5” algorithm. This is one of the fastest known algorithms to compute a Gröbner basis of a polynomial ideal I generated by polynomials f1,…,fm. A major reason for this is what Faugère called the algorithm’s “new” criterion, and we call “the F5 criterion”; it provides a sufficient condition for a set of polynomials G to be a Gröbner basis. However, the F5 algorithm is difficult to grasp, and there are unresolved questions regarding its termination.This paper introduces some new concepts that place the criterion in a more general setting: S-Gröbner bases and primitive S-irreducible polynomials. We use these to propose a new, simple algorithm based on a revised F5 criterion. The new concepts also enable us to remove various restrictions, such as proving termination without the requirement that f1,…,fm be a regular sequence.  相似文献   
8.
The change in shape inducible in some photo-reversible molecules using light can effect powerful changes to a variety of properties of a host material. This class of reversible light-switchable molecules includes molecules that photo-dimerize, such as coumarins and anthracenes; those that allow intra-molecular photo-induced bond formation, such as fulgides, spiro-pyrans, and diarylethenes; and those that exhibit photo-isomerization, such as stilbenes, crowded alkenes, and azobenzenes. The most ubiquitous natural molecule for reversible shape change, however, and perhaps the inspiration for all artificial bio-mimics, is the rhodopsin/retinal protein system that enables vision, and this is the quintessential reversible photo-switch for performance and robustness. Here, the small retinal molecule embedded in a cage of rhodopsin helices isomerizes from a cis geometry to a trans geometry around a C=C double bond with the absorption of just a single photon. The modest shape change of just a few angstroms is quickly amplified and sets off a cascade of larger shape and chemical changes, eventually culminating in an electrical signal to the brain of a vision event, the energy of the input photon amplified many thousands of times in the process. Complicated biochemical pathways then revert the trans isomer back to cis, and set the system back up for another cascade upon subsequent absorption. The reversibility is complete, and many subsequent cycles are possible. The reversion mechanism back to the initial cis state is complex and enzymatic, hence direct application of the retinal/rhodopsin photo-switch to engineering systems is difficult. Perhaps the best artificial mimic of this strong photo-switching effect however in terms of reversibility, speed, and simplicity of incorporation, is azobenzene. Trans and cis states can be switched in microseconds with low-power light, reversibility of 105 and 106 cycles is routine before chemical fatigue, and a wide variety of molecular architectures is available to the synthetic materials chemist, permitting facile anchoring and compatibility, as well as chemical and physical amplification of the simple geometric change. This review article focuses on photo-mechanical effect taking place in various material systems incorporating azobenzene. The photo-mechanical effect can be defined as reversible change in shape by absorption of light, which results in a significant macroscopic mechanical deformation, and reversible mechanical actuation, of the host material. Thus, we exclude simple thermal expansion effects, reversible but non-mechanical photo-switching or photo-chemistry, as well as the wide range of optical and electro-optical switching effects for which good reviews exist elsewhere. Azobenzene-based material systems are also of great interest for light energy harvesting applications across much of the solar spectrum, yet this emerging field is still in an early enough stage of research output as to not yet warrant review, but we hope that some of the ideas put forward here toward promising future directions of research, will help guide the field.  相似文献   
9.
The photomechanical behavior of cross-linked azobenzene-containing liquid-crystalline polymer films was investigated by means of simultaneous measurement of their optical and mechanical properties. The connection between photoisomerization of the azobenzene moieties, photoinduced change in molecular alignment, photoinduced stress generation, and macroscopic bending was analyzed. Upon UV irradiation, the films exhibited bending due to gradient in cis-azobenzene content, and subsequent unbending when cis-azobenzene content became uniform throughout the film. The maximum photoinduced stress was generated in the same time scale as the time required to reach photostationary state in the cis-azobenzene concentration. The maximum values of photogenerated stress strongly depended on the crosslinker concentration, even if the azobenzene concentration and the cis-azobenzene content in the photostationary state were similar for all the polymer films. The stress is connected to the initial Young's modulus and also to the photoinduced change in birefringence of the polymer films. In addition, a significant photoinduced decrease in Young's modulus was for the first time observed in cross-linked azobenzene-containing liquid-crystalline polymers, which is likely to be an important factor in dictating their photomechanical behavior.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号