首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   3篇
  国内免费   1篇
工业技术   170篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   5篇
  2017年   5篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2013年   15篇
  2012年   7篇
  2011年   11篇
  2010年   8篇
  2009年   11篇
  2008年   11篇
  2007年   5篇
  2006年   5篇
  2005年   9篇
  2004年   2篇
  2003年   9篇
  2002年   8篇
  2001年   5篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
  1969年   1篇
  1968年   3篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
1.
We have developed an IT governance disclosure framework to examine how firms communicate their IT governance activities. Using this framework for a sample of 200 commercial banking firms, our empirical assessment indicates that differences in the level of disclosure are systematically related to differences in institutional settings. We also find that firms with relatively good corporate governance practices consider IT performance measurement matters to be highly important when informing and communicating with shareholders.  相似文献   
2.
3.
The hepatitis C virus (HCV) is a single‐stranded (ss) RNA virus that is responsible for chronic liver diseases, such as cirrhosis, end‐stage liver disease, and hepatocellular carcinoma. Driven by the need to detect the presence of the HCV viral sequence, herein it is demonstrated for the first time that the nonlinear optical (NLO) properties of gold nanoparticles can be used for screening and quantifying HCV RNA without any modification, with excellent detection limit (80 pM ) and selectivity (single base‐pair mismatch). The hyper‐Rayleigh scattering (HRS) intensity increases 25 times when label‐free, 145‐mer, HCV ss‐RNA is hybridized with 400 pM target RNA. The mechanism of HRS intensity change is discussed with experimental evidence for a higher multipolar contribution to the NLO response of gold nanoparticles.  相似文献   
4.
Active shape models (ASMs) and active appearance models (AAMs) are popular approaches for medical image segmentation that use shape information to drive the segmentation process. Both approaches rely on image derived landmarks (specified either manually or automatically) to define the object's shape, which require accurate triangulation and alignment. An alternative approach to modeling shape is the levelset representation, defined as a set of signed distances to the object's surface. In addition, using multiple image derived attributes (IDAs) such as gradient information has previously shown to offer improved segmentation results when applied to ASMs, yet little work has been done exploring IDAs in the context of AAMs. In this work, we present a novel AAM methodology that utilizes the levelset implementation to overcome the issues relating to specifying landmarks, and locates the object of interest in a new image using a registration based scheme. Additionally, the framework allows for incorporation of multiple IDAs. Our multifeature landmark-free AAM (MFLAAM) utilizes an efficient, intuitive, and accurate algorithm for identifying those IDAs that will offer the most accurate segmentations. In this paper, we evaluate our MFLAAM scheme for the problem of prostate segmentation from T2-w MRI volumes. On a cohort of 108 studies, the levelset MFLAAM yielded a mean Dice accuracy of 88% ± 5%, and a mean surface error of 1.5 mm ±.8 mm with a segmentation time of 150/s per volume. In comparison, a state of the art AAM yielded mean Dice and surface error values of 86% ± 9% and 1.6 mm ± 1.0 mm, respectively. The differences with respect to our levelset-based MFLAAM model are statistically significant . In addition, our results were in most cases superior to several recent state of the art prostate MRI segmentation methods.  相似文献   
5.
In this work we present an improvement to the popular Active Appearance Model (AAM) algorithm, that we call the Multiple-Levelset AAM (MLA). The MLA can simultaneously segment multiple objects, and makes use of multiple levelsets, rather than anatomical landmarks, to define the shapes. AAMs traditionally define the shape of each object using a set of anatomical landmarks. However, landmarks can be difficult to identify, and AAMs traditionally only allow for segmentation of a single object of interest. The MLA, which is a landmark independent AAM, allows for levelsets of multiple objects to be determined and allows for them to be coupled with image intensities. This gives the MLA the flexibility to simulataneously segmentation multiple objects of interest in a new image.In this work we apply the MLA to segment the prostate capsule, the prostate peripheral zone (PZ), and the prostate central gland (CG), from a set of 40 endorectal, T2-weighted MRI images. The MLA system we employ in this work leverages a hierarchical segmentation framework, so constructed as to exploit domain specific attributes, by utilizing a given prostate segmentation to help drive the segmentations of the CG and PZ, which are embedded within the prostate. Our coupled MLA scheme yielded mean Dice accuracy values of .81, .79 and .68 for the prostate, CG, and PZ, respectively using a leave-one-out cross validation scheme over 40 patient studies. When only considering the midgland of the prostate, the mean DSC values were .89, .84, and .76 for the prostate, CG, and PZ respectively.  相似文献   
6.
7.
A recent gold nanotechnology‐driven approach opens up a new possibility for the destruction of cancer cells through photothermal therapy. Ultimately, photothermal therapy may enter into clinical therapy and, as a result, there is an urgent need for techniques to monitor the tumor response to therapy. Driven by this need, a nanoparticle surface‐energy‐transfer (NSET) approach to monitor the photothermal therapy process by measuring a simple fluorescence intensity change is reported. The fluorescence intensity change is due to the light‐controlled photothermal release of single‐stranded DNA/RNA via dehybridization during the therapy process. Time‐dependent results show that just by measuring the fluorescence intensity change, the photothermal therapy response during the therapy process can be monitored. The possible mechanism and operating principle of the NSET assay are discussed. Ultimately, this NSET assay could have enormous potential applications in rapid, on‐site monitoring of the photothermal therapy process, which is critical to providing effective treatment of cancer and multidrug‐resistant bacterial infections.  相似文献   
8.
Principal components analysis is an important and well-studied subject in statistics and signal processing. Several algorithms for solving this problem exist, and could be mostly grouped into one of the following three approaches: adaptation based on Hebbian updates and deflation, optimization of a second order statistical criterion (like reconstruction error or output variance), and fixed point update rules with deflation. In this study, we propose an alternate approach that avoids deflation and gradient-search techniques. The proposed method is an on-line procedure based on recursively updating the eigenvector and eigenvalue matrices with every new sample such that the estimates approximately track their true values as would be calculated analytically from the current sample estimate of the data covariance matrix. The perturbation technique is theoretically shown to be applicable for recursive canonical correlation analysis, as well. The performance of this algorithm is compared with that of a structurally similar matrix perturbation-based method and also with a few other traditional methods like Sanger’s rule and APEX.
  相似文献   
9.
Breast cancer is the most frequently diagnosed malignancy and the second leading cause of mortality in women. In the last decade, ultrasound along with digital mammography has come to be regarded as the gold standard for breast cancer diagnosis. Automatically detecting tumors and extracting lesion boundaries in ultrasound images is difficult due to their specular nature and the variance in shape and appearance of sonographic lesions. Past work on automated ultrasonic breast lesion segmentation has not addressed important issues such as shadowing artifacts or dealing with similar tumor like structures in the sonogram. Algorithms that claim to automatically classify ultrasonic breast lesions, rely on manual delineation of the tumor boundaries. In this paper, we present a novel technique to automatically find lesion margins in ultrasound images, by combining intensity and texture with empirical domain specific knowledge along with directional gradient and a deformable shape-based model. The images are first filtered to remove speckle noise and then contrast enhanced to emphasize the tumor regions. For the first time, a mathematical formulation of the empirical rules used by radiologists in detecting ultrasonic breast lesions, popularly known as the "Stavros Criteria" is presented in this paper. We have applied this formulation to automatically determine a seed point within the image. Probabilistic classification of image pixels based on intensity and texture is followed by region growing using the automatically determined seed point to obtain an initial segmentation of the lesion. Boundary points are found on the directional gradient of the image. Outliers are removed by a process of recursive refinement. These boundary points are then supplied as an initial estimate to a deformable model. Incorporating empirical domain specific knowledge along with low and high-level knowledge makes it possible to avoid shadowing artifacts and lowers the chance of confusing similar tumor like structures for the lesion. The system was validated on a database of breast sonograms for 42 patients. The average mean boundary error between manual and automated segmentation was 6.6 pixels and the normalized true positive area overlap was 75.1%. The algorithm was found to be robust to 1) variations in system parameters, 2) number of training samples used, and 3) the position of the seed point within the tumor. Running time for segmenting a single sonogram was 18 s on a 1.8-GHz Pentium machine.  相似文献   
10.
In this study, we report the use of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT-IR) for the identification and quantitation of two polymorphs of Aprepitant, a substance P antagonist for chemotherapy-induced emesis. Mixtures of the polymorph pair were prepared by weight and ATR-FT-IR spectra of the powdered samples were obtained over the wavelength range of 700-1500 cm(-1). Significant spectral differences between the two polymorphs at 1140 cm(-1) show that ATR-FT-IR can provide definitive identification of the polymorphs. To investigate the feasibility of ATR-FT-IR for quantitation of polymorphic forms of Aprepitant, a calibration plot was constructed with known mixtures of the two polymorphs by plotting the peak ratio of the second derivative of absorbance spectra against the weight percent of form II in the polymorphic mixture. Using this novel approach, 3 wt % of one crystal form could be detected in mixtures of the two polymorphs. The accuracy of ATR-FT-IR in determining polymorph purity of the drug substance was tested by comparing the results with those obtained by X-ray powder diffractometry (XRPD). Indeed, polymorphic purity results obtained by ATR-FT-IR were found to be in good agreement with the predictions made by XRPD and compared favorably with actual values in the known mixtures. The present study clearly demonstrates the potential of ATR-FT-IR as a quick, easy, and inexpensive alternative to XRPD for the determination of polymorphic identity and purity of solid drug substances. The technique is ideally suited for polymorph analysis, because it is precise, accurate, and requires minimal sample preparation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号