首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
工业技术   5篇
  2021年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
排序方式: 共有5条查询结果,搜索用时 62 毫秒
1
1.
Innovative off-the-shelf CO2 capture approaches are burgeoning in the literature, among which, ionic liquids seem to have been omitted in the recent Intergovernmental Panel on Climate Change (IPCC) survey. Ionic liquids (ILs), because of their tunable properties, wide liquid range, reasonable thermal stability, and negligible vapor pressure, are emerging as promising candidates rivaling with conventional amine scrubbing. Due to substantial solubility, room-temperature ionic liquids (RTILs) are quite useful for CO2 separation from flue gases. Their absorption capacity can be greatly enhanced by functionalization with an amine moiety but with concurrent increase in viscosity making process handling difficult. However this downside can be overcome by making use of supported ionic-liquid membranes (SILMs), especially where high pressures and temperatures are involved. Moreover, due to negligible loss of ionic liquids during recycling, these technologies will also decrease the CO2 capture cost to a reasonable extent when employed on industrial scale. There is also need to look deeply into the noxious behavior of these unique species. Nevertheless, the flexibility in synthetic structure of ionic liquids may make them opportunistic in CO2 capture scenarios.  相似文献   
2.
Graphene field effect transistors (FETs) are extremely sensitive to gas exposure. Charge transfer doping of graphene FETs by atmospheric gas is ubiquitous but not yet understood. We have used graphene FETs to probe minute changes in electrochemical potential during high-purity gas exposure experiments. Our study shows quantitatively that electrochemistry involving adsorbed water, graphene, and the substrate is responsible for doping. We not only identify the water/oxygen redox couple as the underlying mechanism but also capture the kinetics of this reaction. The graphene FET is highlighted here as an extremely sensitive potentiometer for probing electrochemical reactions at interfaces, arising from the unique density of states of graphene. This work establishes a fundamental basis on which new electrochemical nanoprobes and gas sensors can be developed with graphene.  相似文献   
3.
Solid and flexible electrochromic (EC) devices require a delicate design of every component to meet the stringent requirements for transparency, flexibility, and deformation stability. However, the electrode technology in flexible EC devices stagnates, wherein brittle indium tin oxide (ITO) is the primary material. Meanwhile, the inflexibility of metal oxide usually used in an active layer and the leakage issue of liquid electrolyte further negatively affect EC device performance and lifetime. Herein, a novel and fully ITO-free flexible organic EC device is developed by using Ag–Au core–shell nanowire (Ag–Au NW) networks, EC polymer and LiBF4/propylene carbonate/poly(methyl methacrylate) as electrodes, active layer, and solid electrolyte, respectively. The Ag–Au NW electrode integrated with a conjugated EC polymer together display excellent stability in harsh environments due to the tight encapsulation by the Au shell, and high area capacitance of 3.0 mF cm−2 and specific capacitance of 23.2 F g−1 at current density of 0.5 mA cm−2. The device shows high EC performance with reversible transmittance modulation in the visible region (40.2% at 550 nm) and near-infrared region ( − 68.2% at 1600 nm). Moreover, the device presents excellent flexibility ( > 1000 bending cycles at the bending radius of 5 mm) and fast switching time (5.9 s).  相似文献   
4.
Large area, high quality graphene was synthesized from different liquid alcohols by chemical vapor deposition on copper foils in a tube furnace. The quality of the synthesized graphene was systematically investigated with various growth conditions. Alcohol vapor exposure times of 5 min and an average growth temperature of 850 °C yield continuous graphene monolayer films, as inferred from Raman spectroscopy. X-ray photoelectron spectroscopy shows that the oxygen moieties found in the source molecules have no measureable doping or oxidation effect in the synthesized graphene. Raman spectroscopy indicates that graphene films transferred to insulating substrates are of high quality. The field effect mobility of large area graphene transistors was measured at room temperature to be in the range 1800–2100 cm2/V s at carrier densities between 1011/cm2 and 1012/cm2.  相似文献   
5.
Room temperature magnetron sputtering is used to deposit SiO2 and Si3N4 encapsulation layers on top of back gated graphene transistors, which are fabricated with CVD grown graphene transferred onto SiO2 and Si3N4 substrates. Raman spectroscopy with 514 nm laser excitation was performed on bare and encapsulated devices. A small increase in D peak of the encapsulated spectrum indicates minimal increase in defect density for both SiO2 and Si3N4 deposition. Graphene on Si3N4 exhibits an average mobility of ~ 4000 cm2/V.s at a carrier density of 1012 cm− 2 and up to 80% mobility is retained upon encapsulation with Si3N4, while on SiO2 the average mobility is ~ 2000 cm2/V.s with mobility retention of up to 55% with SiO2 encapsulation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号