首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   3篇
  国内免费   1篇
工业技术   5篇
  2023年   3篇
  2019年   1篇
  2018年   1篇
排序方式: 共有5条查询结果,搜索用时 109 毫秒
1
1.
以纳米TiO2为添加相,按一定比例添加B2O3和H3BO3,采用高能球磨和粉末冶金法相结合的方法制备了体积分数为4%的纳米氧化物粒子增强Al基复合材料,最后在723 K的条件下以16∶1的挤压比制备了复合材料棒材。结果表明,经过4 h的球磨后,可以实现纳米氧化物在Al基体中的弥散分布;经过893 K的真空热压后,添加相与Al基体发生原位化学反应并生成了Al2O3等。当Ti与B物质的量比为1.0∶1.5时,复合材料的力学性能最优;同时,当B元素的先驱体化学成分不同时,复合材料的力学性能差异显著;TiO2+H3BO3/Al在室温和623 K下的拉伸强度分别为507.7 MPa和151.3 MPa,展现出最高的室温力学性能;TiO2+B2O3/Al在室温和623 K下的拉伸强度分别为353.7 MPa和167....  相似文献   
2.
利用粉末冶金法制备了含15%SiC (体积分数)的SiC/Al-7.5Zn-2.8Mg-1.7Cu (质量分数,%)复合材料,采用TEM、EPMA和拉伸实验等分析测试手段,研究了热压烧结温度(500~560℃)对复合材料微观组织和力学性能的影响。结果表明,所选热压温度下均可制备致密无孔洞的复合材料坯锭。热压温度为500和520℃时,SiC/Al界面反应程度较轻,挤压棒材经T6热处理后,Zn元素均匀分布于基体中,但存在的少量富Mg微米级难溶相使复合材料的力学性能产生较大波动。当热压温度升高到540℃时,富Mg难溶相尺寸明显减小,元素分布变得更均匀,复合材料力学性能稳定性明显提升。当热压温度继续升高到560℃时,Mg元素开始向SiC颗粒周围偏聚,界面反应更加严重,而且降低了基体中MgZn_2的体积分数,使复合材料抗拉强度明显下降。对560℃热压的复合材料进行高角度环形暗场像和EDS分析,发现SiC/Al界面同时存在含Mg氧化物和粗大的MgZn_2沉淀相。  相似文献   
3.
目的研究搅拌摩擦加工对Al_2O_3/B_4C/Al复合材料力学性能的影响。方法将球形铝粉球磨成片状后氧化,并向其中混入质量分数为10%的碳化硼颗粒,热压成形后锻压,对锻饼进行一道次的搅拌摩擦加工,研究搅拌摩擦加工后复合材料的室温与高温力学性能。结果通过搅拌摩擦加工能显著提高材料室温强度,但与锻压态材料相比,材料高温强度降低。结论晶界处氧化铝对材料高温性能有重要影响,搅拌摩擦加工使晶界处氧化铝破碎并进入晶粒内部,提高了室温强度,但不利于提高高温性能。  相似文献   
4.
利用Al-La2O3的原位反应和粉末冶金工艺制备出(Al11La3+Al2O3)/Al复合材料。结果表明,高能球磨和高温烧结促进了原位反应,使Al与La2O3充分反应并制备出致密无缺陷的材料。对其微观组织的分析表明,微米Al11La3和纳米Al2O3颗粒均匀分散于基体之中。这种复合材料的室温抗拉强度为328 MPa、延伸率为10.5%,350℃的高温抗拉强度为119 MPa、延伸率为10.2%。与传统Al-Cu-Mg-Ag和Al-Si-Cu-Mg耐热铝合金相比,本文的制备的(Al11La3+Al2O3)/Al复合材料其高温抗拉强度提高了大约20%。这种材料的室温强化机制源于Al11La3和Al  相似文献   
5.
用真空热压法制备不同B4C颗粒尺寸(7μm、14μm、20μm)的15%B4C/Al-6.5Zn-2.8Mg-1.7Cu复合材料,研究了增强颗粒尺寸对其微观组织和力学性能的影响。结果表明,在这三种复合材料中B4C颗粒均匀分布,B4C-Al界面反应较为轻微,未见明显的界面反应产物。三种复合材料基体中沉淀相的尺寸基本相同(约为5.5 nm)。B4C颗粒的尺寸对复合材料力学性能有较大的影响。B4C颗粒尺寸为7μm的复合材料性能最佳,屈服强度为648 MPa,抗拉强度为713 MPa,延伸率为3.3%。随着颗粒尺寸的增大复合材料的强度和延伸率均降低。对三种复合材料的强化机制和断裂机制的分析结果表明:小尺寸B4C颗粒增强的复合材料强度较高,颗粒在变形过程中不易断裂,因此其塑性较好。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号