首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
工业技术   15篇
  2020年   1篇
  2018年   2篇
  2017年   2篇
  2013年   3篇
  2011年   1篇
  2009年   1篇
  2006年   2篇
  2005年   2篇
  1998年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
A comparative study on corrosion behaviors of various Mg-Al-Zn alloys (AZ21, AZ41, AZ61 and AZ91 series, cast under same cooling conditions and controlled alloying composition) was carried out. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used for microstructural examinations. The corrosion behaviors were evaluated by immersion tests and potentiodynamic polarization measurements in 3.5% NaCl solution. The results showed that the influence of Al addition on corrosion resistance was more pronounced up to 4% (i.e. AZ41) above which its influence was at less extent. The deterioration of the corrosion resistance of the alloys, at higher Al contents, was attributed to the amount and morphology of β-Mg17Al12 intermetallics and the interruption of continuity of the oxide film on the surface of the alloys owing to coarsened β intermetallics.  相似文献   
2.
This study focused on fabrication of the thermochromic microcapsules and their application to the cotton fabric. In this study, thermochromic systems composed of crystal violet lactone, bisphenol A, and 1-tetradecanol were prepared and microencapsulated by emulsion polymerization method in poly(methyl methacrylate-co-ethylene glycol dimethacrylate-co-glycidyl methacrylate) wall. The microcapsules were analyzed by Fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscope, differential scanning calorimetry, and thermogravimetric analysis. Their thermoregulating property was tested by T-history test. The results revealed that microcapsules with smooth surfaces, core–shell structured, and spherical shape were successfully produced. The latent heat storage capacity of the microcapsules decreased from 202 J g−1 to 167 J g−1 when their shell/core ratio changed from 0.5/1 to 2/1. Microcapsules were adequately had sufficient thermal resistance to the temperatures they will encounter during their application to textile products and their usage. According to the UV–visible spectroscopy analysis and color measurements, the microcapsules exhibited reversible color change from blue to colorless and vice versa. Besides, the microcapsule impregnated fabric was able to absorb latent heat energy of 21.79 J g−1 at around 35 °C and had cooling effect. According to the colorimetric parameters, the fabric was at blue color at room temperature and became colorless when heated to the temperature above the melting point of thermochromic system. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48815.  相似文献   
3.
In this study, a series of microencapsulated phase change materials with poly(methyl methacrylate-co-methacrylic acid) P(MMA-co-MAA) shell and n-octadecane or n-eicosane core were synthesized by emulsion polymerization method. The aim was to produce microencapsulated n-alkanes having functional groups on their outer surface, so that functional groups would help increasing physical interactions between microcapsules and fiber surface. Therefore, methyl methacrylate (MMA), ethylene glycoldimethacrylate (EGDM), and methacrylic acid (MAA) were copolymerized in oil phase of n-alkane. FT-IR results proved the successful synthesis of P(MMA-co-MAA) shell of microencapsulated n-alkanes. The DSC results indicated that the microencapsulated n-alkanes have considerable latent heat storage capacity in a range of 58–145 J/g. The average melting and freezing temperatures of the microencapsulated n-alkanes were measured as 27 and 26 °C for n-octadecane and 36 and 35 °C for n-eicosane, respectively. The microcapsules were of spherical and compact shape with particle sizes between 15 and 32 μm. The microcapsules on the cotton fabric applied by pad-dry-cure method were found highly durable and they showed sufficient stability upon several washings and rub fastness. Thermo-regulating properties of the fabrics were declared as a result of thermal history measurements.  相似文献   
4.
This study focused on the preparation, characterization, and determination of thermal properties of microencapsulated n‐hexadecane with poly(butyl acrylate) (PBA) to be used in textiles with heat storage property. Microcapsules were synthesized by emulsion polymerization method, and the particle size, particle size distribution, shape, and thermal storage/release properties of the synthesized microcapsules were analyzed using Fourier‐transform infrared spectroscopy, scanning electron microscopy, and differential scanning calorimetry techniques. Allyl methacrylate, ethylene glycol dimethacrylate, and glycidyl methacrylate were used as cross‐linkers to produce unimodal particle size distribution. MicroPBA microcapsules produced using allyl methacrylate cross‐linker were applied to 100% cotton and 50/50% cotton/polyester blend fabrics by pad‐cure method. The mean particle size of microcapsules ranges from 0.47 to 4.25 μm. Differential scanning calorimetry analysis indicated that hexadecane in the microcapsules melts at nearly 17°C and crystallizes at around 15°C. The contents of n‐hexadecane of different PBA microcapsules were in the range of 27.7–50.7%, and the melting enthalpies for these ratios were between 65.67 and 120.16 J/g, respectively. The particle size and thermal properties of microcapsules changed depending on the cross‐linker type. The cotton and 50/50% cotton/polyester blend fabrics stored 6.56 and 28.59 J/g thermal energy, respectively. The results indicated that PBA microcapsules have the potential to be used as a solid‐state thermal energy storage material in fabrics. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
5.
Corrosion behavior of various Mg–Al–Si alloys (AS11, AS21, AS41, AS61 and AS91 series), cast under the same cooling conditions and controlled alloying composition, was investigated systematically. Optical microscopy and scanning electron microscopy were used for microstructural examinations. The corrosion behavior was evaluated by immersion tests and potentiodynamic polarization measurements in 3.5% NaCl solution. The results from both immersion tests and the potentiodynamic polarization measurements showed that marginal improvement in corrosion resistance was observed with 2.0% Al (mass fraction) containing alloy (AS21) whereas Al addition above 2.0% (AS41, AS61 and AS91) deteriorated the corrosion resistance which was attributed to β phase, acting as cathode, and the interruption of continuity of the oxide film on the surface of the alloys owing to coarsened β and Mg2Si phases.  相似文献   
6.
Free radical dispersion polymerization of methyl methacrylate (MMA) was carried out in supercritical carbon dioxide (scCO2) using poly{(heptadecafluorodecyl acrylate)‐co‐3‐[tris(trimethylsilyloxy)silyl]propyl methacrylate} (p(HDFDA‐co‐SiMA)) as stabilizer. Dry, fine powdered spherical poly(methyl methacrylate) (pMMA) particles with well‐defined sizes were produced. The resulting high yield of spherical and relatively uniform micron‐size pMMA particles was formed utilizing various amounts of p(HDFDA‐co‐SiMA) random copolymer. The particle diameter was shown to be dependent on the weight percent of the stabilizer added to the system. The effects of varying the concentration of stabilizer (1–7 wt%), reaction time (4–12 h) and pressure (15–35 MPa) upon the polymerization yield, molar mass and morphology of pMMA were investigated. Copyright © 2005 Society of Chemical Industry  相似文献   
7.
8.
Adaptive power control and MMSE interference suppression   总被引:8,自引:0,他引:8  
Ulukus  Sennur  Yates  Roy D. 《Wireless Networks》1998,4(6):489-496
Power control algorithms assume that the receiver structure is fixed and iteratively update the transmit powers of the users to provide acceptable quality of service while minimizing the total transmitter power. Multiuser detection, on the other hand, optimizes the receiver structure with the assumption that the users have fixed transmitter powers. In this study, we combine the two approaches and propose an iterative and distributed power control algorithm which iteratively updates the transmitter powers and receiver filter coefficients of the users. We show that the algorithm converges to a minimum power solution for the powers, and an MMSE multiuser detector for the filter coefficients. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
9.
对比研究各种Mg-Al-Zn合金(AZ21、AZ41、AZ61和AZ91系列,相同冷却条件并控制合金成分)的腐蚀性能。用扫描电镜(SEM)和X射线衍射(XRD)分析合金的显微结构。通过浸泡实验评估其腐蚀行为,将样品浸泡入3.5%Na Cl溶液中,测量其动电位极化曲线。结果表明,当铝含量小于或等于4%时(如AZ41),对耐腐蚀性的影响更显著,而当铝含量更高时,影响程度较低。当铝含量高于4%时,合金的耐腐蚀性能下降,这与生成的β-Mg_(17)Al_(12)金属间化合物的含量和形貌有关,粗大的β金属间化合物会破坏合金表面氧化膜的连续性。  相似文献   
10.
In this study, PEO nanofibers with novel architectures were developed via newly designed distance positioning apparatus in order to feed polymer solution in a different way. The surface morphology and alignment of nanofibers were observed using a scanning electron microscope (SEM). SEM micrographs revealed that different morphologies could be obtained by changing feeding position. For the first time in the nanofibers literature; nanofibers were simultaneously collected on three different positions (collector plate, X-axis, and Y-axis) and surface morphology of these nanofibers was found to be different which is promising in terms of their potential regarding utilization of same nanofibrous mat for functional applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号