首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
工业技术   5篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2014年   2篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
Telecommunication Systems - Device-to-device (D2D) communication enabled cellular system is capable of enhancing the spectrum utilization and throughput performance of the system. However, D2D...  相似文献   
2.
Ultra-wideband (UWB) is a booming technology in the field of wireless communication. This paper presents a brief idea related to the various coherent and non-coherent IR-UWB detectors. Due to the limitation in transmit power spectral density of UWB system, the major challenges faced by UWB system includes, achieving Quality of Service, system performance and coverage area. So, the combination of UWB system with cooperative communication will not only improve the system performance, but also help in expanding coverage area of signals. A brief review of the work done by various researchers in the field of cooperative impulse radio (IR) UWB communication is also presented in this paper. The working principle and performance analysis of the various coherent and non-coherent IR-UWB detectors using cooperative relay strategies are also discussed at large in this paper. The various fixed cooperative relay strategies used for cooperative UWB communication is Amplify and Forward, Decode and Forward and Detect and Forward. From the simulation results it can be inferred that, even though IR-UWB DTR receiver gives a much better BER performance than IR-UWB ED receiver using both cooperative and non-cooperative strategies, yet ED receiver is preferred because of its less complexity and low power consumption. Future prospects in the field of cooperative IR-UWB communication have also been discussed in this paper.  相似文献   
3.
4.
In this paper, a novel reinforcement learning (RL) approach with cell sectoring is proposed to solve the channel and power allocation issue for a device‐to‐device (D2D)‐enabled cellular network when the prior traffic information is not known to the base station (BS). Further, this paper explores an optimal policy for resource and power allocation between users intending to maximize the sum‐rate of the overall system. Since the behavior of wireless channel and traffic request of users in the system is stochastic in nature, the dynamic property of the environment allows us to employ an actor‐critic RL technique to learn the best policy through continuous interaction with the surrounding. The proposed work comprises of four phases: cell splitting, clustering, queuing model, and channel allocation and power allocation simultaneously using an actor‐critic RL. The implementation of cell splitting with novel clustering technique increases the network coverage, reduces co‐channel cell interference, and minimizes the transmission power of nodes, whereas the queuing model solves the issue of waiting time for users in a priority‐based data transmission. With the help of continuous state‐action space, the actor‐critic RL algorithm based on policy gradient improves the overall system sum‐rate as well as the D2D throughput. The actor adopts a parameter‐based stochastic policy for giving continuous action while the critic estimates the policy and criticizes the actor for the action. This reduces the high variance of the policy gradient. Through numerical simulations, the benefit of our resource sharing scheme over other existing traditional scheme is verified.  相似文献   
5.
The recent developments in radio technologies, paves its way to impulse radio (IR) ultra-wideband (UWB) communication, which is used for low power, short range and high bandwidth communication, thereby exploiting a large portion of radio spectrum. In this paper, a brief review of the work done by various researchers on coherent and non-coherent IR-UWB receivers has been analysed, based on their bit error rate (BER) performances, as well as pros and cons of using these receivers. An in depth study on the receivers concludes that, non-coherent IR-UWB receiver is preferred over its counterpart coherent IR-UWB receiver even though it comes at the expense of poor BER performance. The simulation results prove that, though the performances are same, the low complexity of energy detector (ED) receivers gives an edge over the autocorrelation receivers. Further, ED receiver suffers from noise, which paves way to using weighted ED (WED) receiver. The superiority of WED receivers over all the other non-coherent UWB receivers is further confirmed by the simulation performed in AWGN and IEEE 802.15.4a UWB channels. It can also be concluded from the review that, some special receivers such as generalized likelihood ratio test, multi-symbol differential detector and decision feedback differential transmitted reference, when clubbed with UWB systems, lead to further improvement in BER performance.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号